Q
QuestionMathematics

Convert from binary to decimal numbers: a. 1010100 b. 1101.001 c. 0.110011
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
I'll solve this binary to decimal conversion problem step by step, following the specified LaTeX formatting guidelines:

Converting $$1010100_{2}$$ to decimal:
a.

Step 2
: Write out the place values from right to left

1010100_{2} = (1 \times 2^{6}) + (0 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0})

Final Answer

b. Converting 1101.001_{2} to decimal: Step 1: Separate integer and fractional parts Integer part: 1101_{2} Fractional part: 0.001_{2} Step 2: Convert integer part 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 8 + 4 + 0 + 1 = 13 Step 3: Convert fractional part 0 \times 2^{- 1} + 0 \times 2^{- 2} + 1 \times 2^{- 3} = 0 + 0 + \frac{1}{8} = 0.125 Step 4: Combine parts 13 + 0.125 = 13.125 c. Converting 0.110011_{2} to decimal: Step 1: Calculate each fractional place value 1 \times 2^{- 1} + 1 \times 2^{- 2} + 0 \times 2^{- 3} + 0 \times 2^{- 4} + 1 \times 2^{- 5} + 1 \times 2^{- 6} Step 2: Compute values - 1 \times 2^{- 1} = 0.5 - 1 \times 2^{- 2} = 0.25 - 0 \times 2^{- 3} = 0 - 0 \times 2^{- 4} = 0 - 1 \times 2^{- 5} = 0.03125 - 1 \times 2^{- 6} = 0.015625 Step 3: Sum the values 0.5 + 0.25 + 0 + 0 + 0.03125 + 0.015625 = 0.796875