Directions: Complete each proof. 1. Given: $m \angle 4 +m \angle 7 = 180^{\circ}$ Prove: $c\|d$ | Statements | Reasons | | :-- | :-- | | | | | | | | | | | | | | | | 2. Given: $m \angle 3 =m \angle 8$ Prove: $m \angle 3 +m \angle 6 = 180^{\circ}$ | Statements | Reasons | | :-- | :-- | | | | | | | | | | 3. Given: $p \| q: \angle 1 \cong \angle 5$ Prove: $\angle 2 \cong \angle 5$ | Statements | Reasons | | :-- | :-- | | | | | | | | | | | | |
Attachments
Image attachment 1 for homework question
Image attachment 1
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1

| $c || d$ | Converse of the Same Side Interior Angles Theorem |
Prove: $c || d$ | Statements | Reasons | | :-- | :-- |

Step 2

| $m angle 3 + m angle 9 = 180^{\circ}$ | Linear pair postulate |
Prove: $m angle 3 + m angle 6 = 180^{\circ}$ | Statements | Reasons | | :-- | :-- |

Final Answer

| $∠ 2 ≅ ∠ 1$ | Transitive property of congruence |