Instructions: Select the correct answer. Rewrite the expression $\frac{x^{3}+ 10 x^{2}+ 13 x+ 39}{x^{2}+ 2 x+ 1}$ in the form $q(x)+\frac{r(x)}{b(x)}$. \begin{aligned} & (x+ 8)+\frac{- 4 x+ 31}{x^{2}+ 2 x+ 1} \\ & (- 4 x+ 31)+\frac{x+ 8}{x^{2}+ 2 x+ 1} \\ & (x+ 8)+\frac{- 4 x+ 31}{x^{3}+ 10 x^{2}+ 13 x+ 39} \\ & (- 4 x+ 31)+\frac{x+ 8}{x^{3}+ 10 x^{2}+ 13 x+ 39} \end{aligned}
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
I'll solve this step by step using polynomial long division.

Step 2
: Set up polynomial long division

We want to divide $$\frac{x^{3}+10x^{2}+13x+39}{x^{2}+2x+1}

Final Answer

This matches option (A) in the original problem.