What is the purpose of adding 2πk to the final answer when solving a trigonometric equation? A. To account for all solutions by adding integer multiples of the period. B. To represent the periodic nature of sine and cosine functions. C. To ensure that solutions include all possible angles within their cycles. D. To provide the general solution for periodic functions. Choose the most appropriate explanation.
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
I'll solve this problem step by step, following the specified LaTeX formatting guidelines:

Step 2
: Understanding Periodic Functions

When solving trigonometric equations, adding $$2\pi k$$ (where $$k$$ is any integer) is crucial for finding the general solution of periodic trigonometric functions.
This accounts for the repeating nature of sine and cosine functions.

Final Answer

Adding 2\pi k accounts for all solutions by adding integer multiples of the period, ensuring a comprehensive representation of the trigonometric function's periodic nature. Key Insight: The 2\pi k term allows us to express the infinite set of solutions that satisfy a trigonometric equation by systematically generating angles that produce the same trigonometric value.