Which of these combinations will result in a reaction? Check all that apply. | $\square$ | $\mathrm{K}(\mathrm{s})+\mathrm{Au}^{3 +}(\mathrm{aq})$ | | --- | --- | | $\square$ | $\mathrm{K}^{+}(\mathrm{aq})+\mathrm{Au}(\mathrm{s})$ |
Attachments
Image attachment 1 for homework question
Image attachment 1
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
: Identify the given half-reactions and their corresponding reduction potentials.

The first half-reaction is: \mathrm{K}(\mathrm{s}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq}) + e^{-} \qquad E^{\circ} = - 2.93 \ \mathrm{V} The second half-reaction is: \mathrm{Au}^{3 +}(\mathrm{aq}) + 3 \ e^{-} \longrightarrow \mathrm{Au}(\mathrm{s}) \qquad E^{\circ} = 1.50 \ \mathrm{V}

Step 2
: Multiply the number of electrons in each half-reaction by an integer so that the number of electrons is equal in both half-reactions.

In this case, we need to multiply the first half-reaction by 3 and the second half-reaction by 1. First half-reaction multiplied by 3: 3 \ \mathrm{K}(\mathrm{s}) \longrightarrow 3 \ \mathrm{K}^{+}(\mathrm{aq}) + 3 \ e^{-} \qquad E^{\circ} = - 2.93 \ \mathrm{V} Second half-reaction multiplied by 1: \mathrm{Au}^{3 +}(\mathrm{aq}) + 3 \ e^{-} \longrightarrow \mathrm{Au}(\mathrm{s}) \qquad E^{\circ} = 1.50 \ \mathrm{V}

Final Answer

The reaction between $\mathrm{K}(\mathrm{s})$ and $\mathrm{Au}^{3 +}(\mathrm{aq})$ will result in a reaction. The balanced reaction is: 3 \ \mathrm{K}(\mathrm{s}) + \mathrm{Au}^{3 +}(\mathrm{aq}) \longrightarrow 3 \ \mathrm{K}^{+}(\mathrm{aq}) + \mathrm{Au}(\mathrm{s})