x5x43=xab If x43x43=xab for all positive values of x what is the value of ab ? \begin{aligned} & \frac{\sqrt{x^{5}}}{\sqrt[3]{x^{4}}}=x^{\frac{a}{b}} \\ & \text { If } \frac{\sqrt[3]{x^{4}}}{\sqrt[3]{x^{4}}}=x^{\frac{a}{b}} \text { for all positive values of } x \\ & \text { what is the value of } \frac{a}{b} \text { ? } \end{aligned}
Attachments
Image attachment 1 for homework question
Image attachment 1
3 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
: Identify the numerator and denominator of the given equation.

The numerator is $$\sqrt{x^{5}}$$ and the denominator is $$\sqrt[3]{x^{4}}$$.

Step 2
: Simplify both the numerator and the denominator.

For the denominator, we can rewrite $$\sqrt[3]{x^{4}}$$ as $$x^{\frac{4}{3}}$$.

Final Answer

The value of the ratio
ab\frac{a}{b}
is
113\frac{11}{3}
.