Find the simplified product where $x \geq 0: \sqrt{5 x}\left(\sqrt{8 x^{2}}- 2 \sqrt{x}\right)$ - $\sqrt{10 x}$ - $2 x \sqrt{40 x}- 2 x$ - $2 x \sqrt{10 x}- 2 \sqrt{5 x}$ - $2 x \sqrt{10 x}- 2 x \sqrt{5}$
Attachments
Image attachment 1 for homework question
Image attachment 1
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
: Distribute the \sqrt{5x} inside the parentheses, being careful with the signs.

\sqrt{5x}\left(\sqrt{8x^2} - 2\sqrt{x}\right) = \sqrt{5x}\sqrt{8x^2} - \sqrt{5x} \cdot 2\sqrt{x}

Step 2
: Simplify the terms on the right side of the equation.

Recall the product rule for radicals: \sqrt{a}\sqrt{b} = \sqrt{ab} \begin{align*} \sqrt{5x}\sqrt{8x^2} - \sqrt{5x} \cdot 2\sqrt{x} &= \sqrt{5x \cdot 8x^2} - 2\sqrt{5x^2} \ &= \sqrt{40x^3} - 2x\sqrt{5} \end{align*}

Final Answer

The simplified product is 2x\sqrt{10x} - 2x\sqrt{5}.