If (S)-glyceraldehyde has a specific rotation of $- 8.7^{\circ}$, what is the specific rotation of (R)glyceraldehyde? $\bigcirc+ 8.7^{\circ}$ $\bigcirc- 8.7^{\circ}$ $\bigcirc 0.0^{\circ}$ $\bigcirc$ cannot be determined from the information given

Attachments

Image attachment 1 for homework question
Image attachment 1
3 days agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
: Understand the problem

We are given the specific rotation of (S)-glyceraldehyde and asked to find the specific rotation of (R)-glyceraldehyde. The specific rotation of an optically active compound is a physical property that describes the magnitude and direction of its rotation of plane-polarized light.

Step 2
: Recall relevant concepts and formulas

where $[\alpha]_{text{(R)}}$ is the specific rotation of the (R)-enantiomer and $[\alpha]_{text{(S)}}$ is the specific rotation of the (S)-enantiomer.
The specific rotation of an enantiomer is related to the specific rotation of its mirror image (enantiomer) through the relationship:

Final Answer

The specific rotation of (R)glyceraldehyde is $8.7^{\circ}$.

Need Help with Homework?

Stuck on a difficult problem? We've got you covered:

  • Post your question or upload an image
  • Get instant step-by-step solutions
  • Learn from our AI and community of students

Related Questions

Anatomy and Physiology

20 minutes ago

Convert 0.125 into fraction form. A. ~~1~~ B. 2 C. 3 D. 16

·
View Answer

Anatomy and Physiology

20 minutes ago

"Uneven growth of a nail may cause: Ingrown nails Nail splitting Nail ridges Discomfort or pain"

·
View Answer

Anatomy and Physiology

27 minutes ago

The main functions of nucleic acids are to what?

·
View Answer

Anatomy and Physiology

28 minutes ago

**Multiple Choice:** Please select the best answer and click "submit." Which of the following functions is graphed below? - **A.** $$y = \begin{cases} x^3 - 2, & x < 1 \\ x^2 + 4, & x \geq 1 \end{cases}$$ - **B.** $$y = \begin{cases} x^3 - 2, & x \geq 1 \\ x^2 + 4, & x < 1 \end{cases}$$ - **C.** $$y = \begin{cases} x^3 - 2, & x > 1 \\ x^2 + 4, & x \leq 1 \end{cases}$$ - **D.** $$y = \begin{cases} x^3 - 2, & x \leq 1 \\ x^2 + 4, & x > 1 \end{cases}$$

·
View Answer

Anatomy and Physiology

29 minutes ago

Use the standard enthalpies of formation in the table below to determine the change in enthalpy for the reactions which follow the table. | Compound | $\Delta \mathrm{H}^{\circ} f(\mathrm{~kJ} / \mathrm{mol})$ | Compound | $\Delta \mathrm{H}^{\circ} f(\mathrm{~kJ} / \mathrm{mol})$ | | --- | --- | --- | --- | | $\mathrm{CH}_{4}(\mathrm{~g})$ | -74.8 | $\mathrm{NaHCO}_{3}(\mathrm{~s})$ | -947.7 | | $\mathrm{CO}_{2}(\mathrm{~g})$ | -393.5 | $\mathrm{NaOH}(\mathrm{s})$ | -426.7 | | $\mathrm{CO}(\mathrm{g})$ | -110.5 | $\mathrm{NH}_{3}(\mathrm{~g})$ | -46.2 | | $\mathrm{HCl}(\mathrm{g})$ | -92.3 | $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ | -315.4 | | $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | -241.8 | $\mathrm{NO}(\mathrm{g})$ | +90.4 | | $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | -285.8 | $\mathrm{NO}_{2}(\mathrm{~g})$ | +33.9 | | $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ | -20.1 | $\mathrm{SO}_{2}(\mathrm{~g})$ | -296.1 | | $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$ | -811.3 | $\mathrm{SO}_{2}(\mathrm{~g})$ | -395.2 | | $\mathrm{MgSO}_{4}(\mathrm{~s})$ | -1278.2 | $\mathrm{SnCl}_{4}(\mathrm{l})$ | -545.2 | | $\mathrm{MnO}(\mathrm{s})$ | -384.9 | $\mathrm{SnO}(\mathrm{s})$ | -286.2 | | $\mathrm{MnO}_{2}(\mathrm{~s})$ | -519.7 | $\mathrm{SnO}_{2}(\mathrm{~s})$ | -580.7 | | $\mathrm{NaCl}(\mathrm{s})$ | -411.0 | $\mathrm{ZnO}(\mathrm{s})$ | -348.0 | | $\mathrm{NaF}(\mathrm{s})$ | -569.0 | $\mathrm{ZnS}(\mathrm{s})$ | -202.9 | | 1. $\mathrm{NaOH}(\mathrm{s})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | | $\Delta \mathrm{H}^{\circ}=$ ??? | | | 2. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$ | | $\Delta \mathrm{H}^{\circ}=$ ??? | | | 3. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | | $\Delta \mathrm{H}^{\circ}=$ ??? | | | 4. $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})$ | | $\Delta \mathrm{H}^{\circ}=$ ??? | | | 5. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ | | $\Delta \mathrm{H}^{\circ}=$ ??? | |

·
View Answer

Anatomy and Physiology

31 minutes ago

Suppose you have three \( n \times n \) arrays, call them a[][] b[][] and c[][] consider the following: for i = 1 to n for j = 1 to n{ c[i][j] = 0 for k = 1 to n c[i][j] += a[i][k] * b[k][j]; Given a tight big O bound on this algorithm as a function of n.

·
View Answer