# MATH 1324 - Homework \#2 Complete all work neatly on your own paper and not on this assignment sheet itself. All steps should be shown and your work must be easily readable. Problems without work or explanation will receive no credit. You will be turning in all homework online through D^2L. ## Matrix Arithmetic Evaluate the following matrix operations, or state that there is no solution and explain why not. 1) $\left[\begin{array}{ll}3 & 1 \\ 5 & 2 \\ 10 & 4\end{array}\right]+\left[\begin{array}{ll}6 & 7 \\ 0 & 8 \\ 9 & 1\end{array}\right]$ 2) $\left[\begin{array}{ll}22 & 35 \\ 48 & 62\end{array}\right]+\left[\begin{array}{ll}14 & 27 \\ 55 & 28\end{array}\right]$ 3) $\left[\begin{array}{lll}11 & 22 & 33 \\ 44 & 55 & 66\end{array}\right]-\left[\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 2\end{array}\right]$ 4) $\left[\begin{array}{lll}16 & 14 \\ 12 & 10 \\ 28 & 26\end{array}\right]-\left[\begin{array}{lll}13 & 12 & 11 \\ 9 & 12 & 15\end{array}\right]$ 5) $5\left[\begin{array}{cc}4 & 8 \\ - 7 & 13\end{array}\right]$
Attachments
Image attachment 1 for homework question
Image attachment 1
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
: Add the matrices together.

\left[\begin{array}{ll}3 & 1 \ 5 & 2 \ 10 & 4\end{array}\right]+\left[\begin{array}{ll}6 & 7 \ 0 & 8 \ 9 & 1\end{array}\right] = \left[\begin{array}{ll}3+6 & 1+7 \ 5+0 & 2+8 \ 10+9 & 4+1\end{array}\right] = \boxed{\left[\begin{array}{ll}9 & 8 \ 5 & 10 \ 19 & 5\end{array}\right]}
To do this, add the corresponding entries.

Step 2
: Add the matrices together.

\left[\begin{array}{ll}22 & 35 \ 48 & 62\end{array}\right]+\left[\begin{array}{ll}14 & 27 \ 55 & 28\end{array}\right] = \left[\begin{array}{ll}22+14 & 35+27 \ 48+55 & 62+28\end{array}\right] = \boxed{\left[\begin{array}{ll}36 & 62 \ 103 & 90\end{array}\right]}
To do this, add the corresponding entries.

Final Answer

5\left[\begin{array}{cc}4 & 8 \ - 7 & 13\end{array}\right] = \left[\begin{array}{cc}5\times^4 & 5\times^8 \ 5\times- 7 & 5\times^13\end{array}\right] = \boxed{\left[\begin{array}{cc}20 & 40 \ - 35 & 65\end{array}\right]}