Multiply: $4 x \sqrt[3]{4 x^{2}}\left(2 \sqrt[3]{32 x^{2}}-x \sqrt[3]{2 x}\right)$ $\times 32 x^{2} \sqrt[3]{2 x}- 8 \sqrt[3]{x^{2}}$ $4 x^{2} \sqrt[3]{2 x}- 8 x^{3}$ $\times 64 x^{2} \sqrt[3]{2 x}- 8 x^{3}$ $64 x^{2} \sqrt[3]{2 x}- 8 x \sqrt[3]{x}$
Attachments
Image attachment 1 for homework question
Image attachment 1
6 months agoReport content

Answer

Full Solution Locked

Sign in to view the complete step-by-step solution and unlock all study resources.

Step 1
: Distribute the factor of 4x\sqrt[3]{4x^2} to each term inside the parentheses.

4x\sqrt[3]{4x^2}\times 2\sqrt[3]{32x^2} - 4x\sqrt[3]{4x^2}\times x\sqrt[3]{2x}

Step 2
: Simplify the terms by multiplying the numbers and combining like radicals.

8x\left(\sqrt[3]{128x^3}\right) - 4x^2\sqrt[3]{8x^3}

Final Answer

4x\sqrt[3]{2x}\left(2 - x\right), 32x^2\sqrt[3]{2x}\left(2 - x\right)