Solution Manual For Shigley's Mechanical Engineering Design, 10th Edition
Solution Manual For Shigley's Mechanical Engineering Design, 10th Edition offers a comprehensive guide to solving every question in your textbook, helping you master the material.
Max Martinez
Contributor
4.7
37
4 months ago
Preview (16 of 775)
Sign in to access the full document!
Shigley’s MED, 10th edition Chapter 1 Solutions, Page 1/12
Chapter 1
Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to 0.0005 in is 270%. Cost of turning to 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.
______________________________________________________________________________
1-8 CA = CB,
10 + 0.8 P = 60 + 0.8 P − 0.005 P 2
P 2 = 50/0.005 P = 100 parts Ans.
______________________________________________________________________________
1-9 Max. load = 1.10 P
Min. area = (0.95)2A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be( )
2
1.10 1.43 .
0.85 0.95
dn Ans= =
______________________________________________________________________________
1-10 (a) X1 + X2:( ) ( )
1 2 1 1 2 2
1 2 1 2
1 2
error
.
x x X e X e
e x x X X
e e Ans
+ = + + +
= = + − +
= +
(b) X1 − X2:( )
( ) ( )
1 2 1 1 2 2
1 2 1 2 1 2 .
x x X e X e
e x x X X e e Ans
− = + − +
= − − − = −
(c) X1 X2:( )( )
1 2 1 1 2 2
1 2 1 2 1 2 2 1 1 2
1 2
1 2 2 1 1 2
1 2
.
x x X e X e
e x x X X X e X e e e
e e
X e X e X X Ans
X X
= + +
= − = + +
+ = +
Chapter 1
Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to 0.0005 in is 270%. Cost of turning to 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.
______________________________________________________________________________
1-8 CA = CB,
10 + 0.8 P = 60 + 0.8 P − 0.005 P 2
P 2 = 50/0.005 P = 100 parts Ans.
______________________________________________________________________________
1-9 Max. load = 1.10 P
Min. area = (0.95)2A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be( )
2
1.10 1.43 .
0.85 0.95
dn Ans= =
______________________________________________________________________________
1-10 (a) X1 + X2:( ) ( )
1 2 1 1 2 2
1 2 1 2
1 2
error
.
x x X e X e
e x x X X
e e Ans
+ = + + +
= = + − +
= +
(b) X1 − X2:( )
( ) ( )
1 2 1 1 2 2
1 2 1 2 1 2 .
x x X e X e
e x x X X e e Ans
− = + − +
= − − − = −
(c) X1 X2:( )( )
1 2 1 1 2 2
1 2 1 2 1 2 2 1 1 2
1 2
1 2 2 1 1 2
1 2
.
x x X e X e
e x x X X X e X e e e
e e
X e X e X X Ans
X X
= + +
= − = + +
+ = +
Shigley’s MED, 10th edition Chapter 1 Solutions, Page 2/12
(d) X1/X2:1 1 1 1 1 1
2 2 2 2 2 2
1
2 2 1 1 1 2 1 2
2 2 2 2 1 2 1 2
1 1 1 1 2
2 2 2 1 2
1
1
1
1 1 then 1 1 1
1
Thus, .
x X e X e X
x X e X e X
e e e X e e e e
X X e X X X X X
x X X e e
e Ans
x X X X X
−
+ +
= =
+ +
+
+ − + − + −
+
= − −
______________________________________________________________________________
1-11 (a) x1 =7 = 2.645 751 311 1
X1 = 2.64 (3 correct digits)
x2 =8 = 2.828 427 124 7
X2 = 2.82 (3 correct digits)
x1 + x2 = 5.474 178 435 8
e1 = x1 − X1 = 0.005 751 311 1
e2 = x2 − X2 = 0.008 427 124 7
e = e1 + e2 = 0.014 178 435 8
Sum = x1 + x2 = X1 + X2 + e
= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks
(b) X1 = 2.65, X2 = 2.83 (3 digit significant numbers)
e1 = x1 − X1 = − 0.004 248 688 9
e2 = x2 − X2 = − 0.001 572 875 3
e = e1 + e2 = − 0.005 821 564 2
Sum = x1 + x2 = X1 + X2 + e
= 2.65 +2.83 − 0.001 572 875 3 = 5.474 178 435 8 Checks
______________________________________________________________________________
1-12( )
( )
3
3
25 1032 1000 1.006 in .
2.5d
S d Ans
n d
= = =
Table A-17: d =1
4
1 in Ans.
Factor of safety:( )
( )
( )
3
3
25 10 4.79 .
32 1000
1.25
S
n Ans
= = =
______________________________________________________________________________
(d) X1/X2:1 1 1 1 1 1
2 2 2 2 2 2
1
2 2 1 1 1 2 1 2
2 2 2 2 1 2 1 2
1 1 1 1 2
2 2 2 1 2
1
1
1
1 1 then 1 1 1
1
Thus, .
x X e X e X
x X e X e X
e e e X e e e e
X X e X X X X X
x X X e e
e Ans
x X X X X
−
+ +
= =
+ +
+
+ − + − + −
+
= − −
______________________________________________________________________________
1-11 (a) x1 =7 = 2.645 751 311 1
X1 = 2.64 (3 correct digits)
x2 =8 = 2.828 427 124 7
X2 = 2.82 (3 correct digits)
x1 + x2 = 5.474 178 435 8
e1 = x1 − X1 = 0.005 751 311 1
e2 = x2 − X2 = 0.008 427 124 7
e = e1 + e2 = 0.014 178 435 8
Sum = x1 + x2 = X1 + X2 + e
= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks
(b) X1 = 2.65, X2 = 2.83 (3 digit significant numbers)
e1 = x1 − X1 = − 0.004 248 688 9
e2 = x2 − X2 = − 0.001 572 875 3
e = e1 + e2 = − 0.005 821 564 2
Sum = x1 + x2 = X1 + X2 + e
= 2.65 +2.83 − 0.001 572 875 3 = 5.474 178 435 8 Checks
______________________________________________________________________________
1-12( )
( )
3
3
25 1032 1000 1.006 in .
2.5d
S d Ans
n d
= = =
Table A-17: d =1
4
1 in Ans.
Factor of safety:( )
( )
( )
3
3
25 10 4.79 .
32 1000
1.25
S
n Ans
= = =
______________________________________________________________________________
Loading page 6...
Loading page 7...
Loading page 8...
Loading page 9...
Loading page 10...
Loading page 11...
Loading page 12...
Loading page 13...
Loading page 14...
Loading page 15...
Loading page 16...
13 more pages available. Scroll down to load them.
Preview Mode
Sign in to access the full document!
100%
Study Now!
XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat
Document Details
Subject
Mechanical Engineering