Advanced Calculus and Mathematical Analysis: Derivatives, Integrals, and Graphical Analysis

This solved assignment explores derivatives, integrals, and graphical analysis in advanced calculus.

Ethan Wilson
Contributor
4.7
51
5 months ago
Preview (3 of 7 Pages)
100%
Purchase to unlock

Page 1

Advanced Calculus and Mathematical Analysis: Derivatives, Integrals, and Graphical Analysis - Page 1 preview image

Loading page image...

Advanced Calculus and Mathematical Analysis: Derivatives, Integrals,and Graphical Analysis1)Find theslope of curve as( )()()( )( )3322939339039dhtttdtdddttdtdtdttt====At3t=slope is( )( )233 3927918h===Write the equation of line with slope18m=and point()()11,3,3ty=as()()()113183318541857yym ttytytyt=− −=+==Thus, the equation of tangent line is1857yt=. Hence, the correct option isB.2)The volume of sphere at3.0r=is()()31343.0336 3.14113.04 cmV===The volume of sphere at3.1r=is()()()323343.134 3.143.13124.72 cmV==The change in volume is33213124.72 cm113.04 cm11.68 cmVV==Hence, the correct option isC.3)Asxtens to2 from left, the function value is( )2 226+=and asxtens to 2 from right, thefunction value is( )246+=, so to remove the discontinuity()2fmust be equal to 6.Hence, the correct option isB.4)To find the velocity function, differentiate position vector with respect totas( )()222222122dv ttdttt=+=+=+At1t=,( )1122 1141 m/sec2v=+==Hence, the correct option isB.5)Since the slope of line is positive in interval()5,3and()0,3, so0f in this interval.Since the slope of line is negative in interval()3,0, so0f in this interval.

Page 2

Advanced Calculus and Mathematical Analysis: Derivatives, Integrals, and Graphical Analysis - Page 2 preview image

Loading page image...

Page 3

Advanced Calculus and Mathematical Analysis: Derivatives, Integrals, and Graphical Analysis - Page 3 preview image

Loading page image...

Since the slope of line is constant in interval()3,6, so0f =in this interval.Hence the correct graph isC.6)The derivative of20.05dvv=+with respect tovis()()( )()220.050.050.05 210.11dddvvvvdvdvdvvv+=+=+=+At46v=,()0.1 4614.615.6+=+=Hence the correct option isA.7)Let the length of rectangle isxfeet and width of rectangle isyfeet.Since the area is 680 square feet, so680680xyyx==The cost is given by()()7 26 214126801412816014Cxyxyxxxx=+=+=+=+Derivative of cost function is2816014Cx =SetCequal to zero and solve forx222816014081601481601481601424.1xxxx====So, value ofyis68024.1428.2y=Hence the correct option isC.8)Find the composite function as()()72727277xgfxgxxx==+=+=Hence, correct option isA.9)Integrate the function as
Preview Mode

This document has 7 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all