Physical Chemistry: Thermodynamics, Structure, and Change Tenth Edition Solution Manual
Find clear solutions to every textbook problem with Physical Chemistry: Thermodynamics, Structure, and Change Tenth Edition Solution Manual, your essential resource for textbook answers.
Olivia Parker
Contributor
4.5
48
3 days ago
Preview (16 of 512)
Sign in to access the full document!
Foundations
A Matter
Answers to discussion questions
A.2
Metals conduct electricity, have luster, and they are malleable and ductile.
Nonmetals do not conduct electricity and are neither malleable nor ductile.
Metalloids typically have the appearance of metals but behave chemically like a nonmetal.
1
IA
2
IIA
3
IIIB
4
IVB
5
VB
6
VIB
7
VIIB
8
VIIIB
9
VIIIB
10
VIIIB
11
IB
12
IIB
13
IIIA
14
IVA
15
VA
16
VIA
17
VIIA
18
VIIIA
1
H
1.008
Periodic Table of the Elements 2
He
4.003
3
Li
6.941
4
Be
9.012
5
B
10.81
6
C
12.01
7
N
14.01
8
O
16.00
9
F
19.00
10
Ne
20.18
11
Na
22.99
12
Mg
24.31
13
Al
26.98
14
Si
28.09
15
P
30.97
16
S
32.07
17
Cl
35.45
18
Ar
39.95
19
K
39.10
20
Ca
40.08
21
Sc
44.96
22
Ti
47.88
23
V
50.94
24
Cr
52.00
25
Mn
54.94
26
Fe
55.85
27
Co
58.93
28
Ni
58.69
29
Cu
63.55
30
Zn
65.38
31
Ga
69.72
32
Ge
72.59
33
As
74.92
34
Se
78.96
35
Br
79.90
36
Kr
83.80
37
Rb
85.47
38
Sr
87.62
39
Y
88.91
40
Zr
91.22
41
Nb
92.91
42
Mo
95.94
43
Tc
(98)
44
Ru
101.1
45
Rh
102.9
46
Pd
106.4
47
Ag
107.9
48
Cd
112.4
49
In
114.8
50
Sn
118.7
51
Sb
121.8
52
Te
127.6
53
I
126.9
54
Xe
131.3
55
Cs
132.9
56
Ba
137.3
57
La
138.9
72
Hf
178.5
73
Ta
180.9
74
W
183.9
75
Re
186.2
76
Os
190.2
77
Ir
192.2
78
Pt
195.1
79
Au
197.0
80
Hg
200.6
81
Tl
204.4
82
Pb
207.2
83
Bi
209.0
84
Po
(209)
85
At
(210)
86
Rn
(222)
87
Fr
(223)
88
Ra
226
89
Ac
(227)
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
145
62
Sm
150.4
63
Eu
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162.5
90
Th
232.0
91
Pa
(231)
92
U
238.0
93
Np
237
94
Pu
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
Transition metals
Lanthanoids
Actinoids
1
IA
2
IIA
3
IIIB
4
IVB
5
VB
6
VIB
7
VIIB
8
VIIIB
9
VIIIB
10
VIIIB
11
IB
12
IIB
13
IIIA
14
IVA
15
VA
16
VIA
17
VIIA
18
VIIIA
1
H
1.008
Periodic Table of the Elements 2
He
4.003
3
Li
6.941
4
Be
9.012
5
B
10.81
6
C
12.01
7
N
14.01
8
O
16.00
9
F
19.00
10
Ne
20.18
11
Na
22.99
12
Mg
24.31
13
Al
26.98
14
Si
28.09
15
P
30.97
16
S
32.07
17
Cl
35.45
18
Ar
39.95
19
K
39.10
20
Ca
40.08
21
Sc
44.96
22
Ti
47.88
23
V
50.94
24
Cr
52.00
25
Mn
54.94
26
Fe
55.85
27
Co
58.93
28
Ni
58.69
29
Cu
63.55
30
Zn
65.38
31
Ga
69.72
32
Ge
72.59
33
As
74.92
34
Se
78.96
35
Br
79.90
36
Kr
83.80
37
Rb
85.47
38
Sr
87.62
39
Y
88.91
40
Zr
91.22
41
Nb
92.91
42
Mo
95.94
43
Tc
(98)
44
Ru
101.1
45
Rh
102.9
46
Pd
106.4
47
Ag
107.9
48
Cd
112.4
49
In
114.8
50
Sn
118.7
51
Sb
121.8
52
Te
127.6
53
I
126.9
54
Xe
131.3
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
A Matter
Answers to discussion questions
A.2
Metals conduct electricity, have luster, and they are malleable and ductile.
Nonmetals do not conduct electricity and are neither malleable nor ductile.
Metalloids typically have the appearance of metals but behave chemically like a nonmetal.
1
IA
2
IIA
3
IIIB
4
IVB
5
VB
6
VIB
7
VIIB
8
VIIIB
9
VIIIB
10
VIIIB
11
IB
12
IIB
13
IIIA
14
IVA
15
VA
16
VIA
17
VIIA
18
VIIIA
1
H
1.008
Periodic Table of the Elements 2
He
4.003
3
Li
6.941
4
Be
9.012
5
B
10.81
6
C
12.01
7
N
14.01
8
O
16.00
9
F
19.00
10
Ne
20.18
11
Na
22.99
12
Mg
24.31
13
Al
26.98
14
Si
28.09
15
P
30.97
16
S
32.07
17
Cl
35.45
18
Ar
39.95
19
K
39.10
20
Ca
40.08
21
Sc
44.96
22
Ti
47.88
23
V
50.94
24
Cr
52.00
25
Mn
54.94
26
Fe
55.85
27
Co
58.93
28
Ni
58.69
29
Cu
63.55
30
Zn
65.38
31
Ga
69.72
32
Ge
72.59
33
As
74.92
34
Se
78.96
35
Br
79.90
36
Kr
83.80
37
Rb
85.47
38
Sr
87.62
39
Y
88.91
40
Zr
91.22
41
Nb
92.91
42
Mo
95.94
43
Tc
(98)
44
Ru
101.1
45
Rh
102.9
46
Pd
106.4
47
Ag
107.9
48
Cd
112.4
49
In
114.8
50
Sn
118.7
51
Sb
121.8
52
Te
127.6
53
I
126.9
54
Xe
131.3
55
Cs
132.9
56
Ba
137.3
57
La
138.9
72
Hf
178.5
73
Ta
180.9
74
W
183.9
75
Re
186.2
76
Os
190.2
77
Ir
192.2
78
Pt
195.1
79
Au
197.0
80
Hg
200.6
81
Tl
204.4
82
Pb
207.2
83
Bi
209.0
84
Po
(209)
85
At
(210)
86
Rn
(222)
87
Fr
(223)
88
Ra
226
89
Ac
(227)
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
145
62
Sm
150.4
63
Eu
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162.5
90
Th
232.0
91
Pa
(231)
92
U
238.0
93
Np
237
94
Pu
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
Transition metals
Lanthanoids
Actinoids
1
IA
2
IIA
3
IIIB
4
IVB
5
VB
6
VIB
7
VIIB
8
VIIIB
9
VIIIB
10
VIIIB
11
IB
12
IIB
13
IIIA
14
IVA
15
VA
16
VIA
17
VIIA
18
VIIIA
1
H
1.008
Periodic Table of the Elements 2
He
4.003
3
Li
6.941
4
Be
9.012
5
B
10.81
6
C
12.01
7
N
14.01
8
O
16.00
9
F
19.00
10
Ne
20.18
11
Na
22.99
12
Mg
24.31
13
Al
26.98
14
Si
28.09
15
P
30.97
16
S
32.07
17
Cl
35.45
18
Ar
39.95
19
K
39.10
20
Ca
40.08
21
Sc
44.96
22
Ti
47.88
23
V
50.94
24
Cr
52.00
25
Mn
54.94
26
Fe
55.85
27
Co
58.93
28
Ni
58.69
29
Cu
63.55
30
Zn
65.38
31
Ga
69.72
32
Ge
72.59
33
As
74.92
34
Se
78.96
35
Br
79.90
36
Kr
83.80
37
Rb
85.47
38
Sr
87.62
39
Y
88.91
40
Zr
91.22
41
Nb
92.91
42
Mo
95.94
43
Tc
(98)
44
Ru
101.1
45
Rh
102.9
46
Pd
106.4
47
Ag
107.9
48
Cd
112.4
49
In
114.8
50
Sn
118.7
51
Sb
121.8
52
Te
127.6
53
I
126.9
54
Xe
131.3
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
NH H
H
Cs
132.9
Ba
137.3
La
138.9
Hf
178.5
Ta
180.9
W
183.9
Re
186.2
Os
190.2
Ir
192.2
Pt
195.1
Au
197.0
Hg
200.6
Tl
204.4
Pb
207.2
Bi
209.0
Po
(209)
At
(210)
Rn
(222)
87
Fr
(223)
88
Ra
226
89
Ac
(227)
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
145
62
Sm
150.4
63
Eu
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162.5
90
Th
232.0
91
Pa
(231)
92
U
238.0
93
Np
237
94
Pu
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
A.4 Valence-shell electron pair repulsion theory (VSEPR theory) predicts molecular
shape with the concept that regions of high electron density (as represented by single bonds,
multiple bonds, and lone pair) take up orientations around the central atom that maximize their
separation. The resulting positions of attached atoms (not lone pairs) are used to classify the
shape of the molecule. When the central atom has two or more lone pair, the molecular geometry
must minimize repulsion between the relatively diffuse orbitals of the lone pair. Furthermore, it
is assumed that the repulsion between a lone pair and a bonding pair is stronger than the
repulsion between two bonding pair, thereby, making bond angles smaller than the idealized
bond angles that appear in the absence of a lone pair.
Solutions to exercises
A.1(b)
A.2(b)
(i) chemical formula and name: CaH2 , calcium hydride
ions: Ca2+ and H–
oxidation numbers of the elements: calcium, +2; hydrogen, –1
(ii) chemical formula and name: CaC 2 , calcium carbide
ions: Ca2+ and C22– (a polyatomic ion)
oxidation numbers of the elements: calcium, +2; carbon, –1
(iii) chemical formula and name: LiN3 , lithium azide
ions: Li + and N3– (a polyatomic ion)
oxidation numbers of the elements: lithium, +1; nitrogen, –⅓
A.3(b)
(i) Ammonia, NH3 , illustrates a molecule with one lone pair on the central atom.
Example Element Ground-state Electronic Configuration
(i) Group 3 Sc, scandium [Ar]3d1 4s 2
(ii) Group 5 V, vanadium [Ar]3d3 4s 2
(iii) Group 13 Ga, gallium [Ar]3d10 4s2 4p1
H
Cs
132.9
Ba
137.3
La
138.9
Hf
178.5
Ta
180.9
W
183.9
Re
186.2
Os
190.2
Ir
192.2
Pt
195.1
Au
197.0
Hg
200.6
Tl
204.4
Pb
207.2
Bi
209.0
Po
(209)
At
(210)
Rn
(222)
87
Fr
(223)
88
Ra
226
89
Ac
(227)
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
145
62
Sm
150.4
63
Eu
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162.5
90
Th
232.0
91
Pa
(231)
92
U
238.0
93
Np
237
94
Pu
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
A.4 Valence-shell electron pair repulsion theory (VSEPR theory) predicts molecular
shape with the concept that regions of high electron density (as represented by single bonds,
multiple bonds, and lone pair) take up orientations around the central atom that maximize their
separation. The resulting positions of attached atoms (not lone pairs) are used to classify the
shape of the molecule. When the central atom has two or more lone pair, the molecular geometry
must minimize repulsion between the relatively diffuse orbitals of the lone pair. Furthermore, it
is assumed that the repulsion between a lone pair and a bonding pair is stronger than the
repulsion between two bonding pair, thereby, making bond angles smaller than the idealized
bond angles that appear in the absence of a lone pair.
Solutions to exercises
A.1(b)
A.2(b)
(i) chemical formula and name: CaH2 , calcium hydride
ions: Ca2+ and H–
oxidation numbers of the elements: calcium, +2; hydrogen, –1
(ii) chemical formula and name: CaC 2 , calcium carbide
ions: Ca2+ and C22– (a polyatomic ion)
oxidation numbers of the elements: calcium, +2; carbon, –1
(iii) chemical formula and name: LiN3 , lithium azide
ions: Li + and N3– (a polyatomic ion)
oxidation numbers of the elements: lithium, +1; nitrogen, –⅓
A.3(b)
(i) Ammonia, NH3 , illustrates a molecule with one lone pair on the central atom.
Example Element Ground-state Electronic Configuration
(i) Group 3 Sc, scandium [Ar]3d1 4s 2
(ii) Group 5 V, vanadium [Ar]3d3 4s 2
(iii) Group 13 Ga, gallium [Ar]3d10 4s2 4p1
Loading page 6...
Loading page 7...
Loading page 8...
Loading page 9...
Loading page 10...
Loading page 11...
Loading page 12...
Loading page 13...
Loading page 14...
Loading page 15...
Loading page 16...
13 more pages available. Scroll down to load them.
Preview Mode
Sign in to access the full document!
100%
Study Now!
XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat
Document Details
Subject
Chemistry