Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition breaks down difficult textbook problems into simple solutions, making your study time more effective.

Julian Cooper
Contributor
4.0
30
5 months ago
Preview (16 of 604 Pages)
100%
Purchase to unlock

Page 1

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 1 preview image

Loading page image...

SOLUTIONSMANUALElementaryDIFFERENTIALEQUATIONSWithBOUNDARYVALUEPROBLEMSSixthEditionC.HenryEdwards¢DavidE.Penney‘WiththeassistanceofDavidCalvis

Page 2

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 2 preview image

Loading page image...

DownloadedfromStudyXY.com®+StudyXYSdYe.o>\|iFprE\3SStudyAnythingThisContentHasbeenPostedOnStudyXY.comassupplementarylearningmaterial.StudyXYdoesnotendroseanyuniversity,collegeorpublisher.Allmaterialspostedareundertheliabilityofthecontributors.wv8)www.studyxy.com

Page 3

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 3 preview image

Loading page image...

!ICONTENTS1FIRST-ORDERDIFFERENTIALEQUATIONS1.1DifferentialEquationsandMathematicalModeling11.2IntegralsasGeneralandParticularSolutions91.3SlopeFieldsandSolutionCurves181.4 SeparableEquationsandApplications271.5LinearFirst-OrderEquations441.6SubstitutionMethodsandExactEquations521.7PopulationModels651.8 Acceleration-VelocityModels78Chapter1ReviewProblems872LINEAREQUATIONSOFHIGHERORDER2.1Introduction:Second-OrderLinearEquations912.2GeneralSolutionsofLinearEquations972.3HomogeneousEquationswithConstantCoefficients1052.4MechanicalVibrations1122.5 NonhomogeneousEquationsandtheMethodofUndeterminedCoefficients1222.6ForcedOscillationsandResonance1332.7ElectricalCircuits1472.8EndpointProblemsandEigenvalues1543POWERSERIESMETHODS3.1IntroductionandReviewofPowerSeries1623.2SeriesSolutionsNearOrdinaryPoints1683.3RegularSingularPoints1813.4MethodofFrobenius:TheExceptionalCases194||-

Page 4

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 4 preview image

Loading page image...

iIBNh3.5 Bessel'sEquation2033.6ApplicationsofBesselFunctions2114LAPLACETRANSFORMMETHODS4.1LaplaceTransformsandInverseTransforms2164.2TransformationofInitialValueProblems2214.3TranslationandPartialFractions2304.4Derivatives,Integrals,andProductsofTransforms2384.5PeriodicandPiecewiseContinuousInputFunctions2454.6 ImpulsesandDeltaFunctions2585LINEARSYSTEMSOFDIFFERENTIALEQUATIONS5.1First-OrderSystemsandApplications2675.2TheMethodofElimination27653LinearSystemsandMatrices2975.4TheEigenvalueMethodforHomogeneousLinearSystems3055.5Second-OrderSystemsandMechanicalApplications3355.6MultipleEigenvalueSolutions3485.7MatrixExponentialsandLinearSystems3625.8 NonhomogeneousLinearSystems3716NUMERICALMETHODS6.1NumericalApproximation:Euler'sMethod3806.2ACloserLookattheEulerMethod3876.3TheRunge-KuttaMethod3976.4NumericalMethodsforSystems407||-

Page 5

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 5 preview image

Loading page image...

7NONLINEARSYSTEMSANDPHENOMENA7.1EquilibriumSolutionsandStability4157.2StabilityandthePhasePlane4287.3LinearandAlmostLinearSystems4377.4EcologicalApplications:PredatorsandCompetitors4547.5NonlinearMechanicalSystems4697.6ChaosinDynamicalSystems4818FOURIERSERIESMETHODS8.1PeriodicFunctionsandTrigonometricSeries4868.2GeneralFourierSeriesandConvergence4968.3FourierSineandCosineSeries5108.4ApplicationsofFourierSeries5248.5HeatConductionandSeparationofVariables5308.6VibratingStringsandtheOne-DimensionalWaveEquation5368.7Steady-StateTemperatureandLaplace'sEquation5439EIGENVALUESANDBOUNDARYVALUEPROBLEMS9.1Sturm-LiouvilleProblemsandEigenfunctionExpansions5549.2ApplicationsofEigenfunctionSeries5639.3SteadyPeriodicSolutionsandNaturalFrequencies5759.4CylindricalCoordinateProblems5889.5 Higher-DimensionalPhenomena596APPENDIXExistenceandUniquenessofSolutions600|||©

Page 6

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 6 preview image

Loading page image...

CHAPTER1FIRST-ORDERDIFFERENTIALEQUATIONSSECTION1.1DIFFERENTIALEQUATIONSANDMATHEMATICALMODELSThemainpurposeofSection1.1issimplytointroducethebasicnotationandterminologyofdifferentialequations,andtoshowthestudentwhatismeantbyasolutionofadifferentialequation.Also,theuseofdifferentialequationsinthemathematicalmodelingofreal-worldphenomenaisoutlined.Problems1-12areroutineverificationsbydirectsubstitutionofthesuggestedsolutionsintothegivendifferentialequations.Weincludeherejustsometypicalexamplesofsuchverifications.3.Ify,=cos2xandy,=sin2x,theny{=-2sin2xandy;=2cos2xsoYW=—4cos2x=—4y,andy;=—4sin2x=—4y,Thusy/+4y,=0andy)+4y,=0.4.Ify,=¢”andy,=e¢™,theny,=3¢andy,=-3e™soyy=9¢"=9yandpy=9e™=9y,5.Ify=e¢*—e™,theny'=e*+e*soy-y=(er+e)~(e*-e™)=2e”*.Thusy=y+2e”.6.Ifyy=e™andy,=xe™,theny]=-2¢™,yi=4e™,y,=¢™-2xe™,andVy=—4e+4xe™.HenceVirayay,=(46)+a(-2e7)+4(e>)=0andVi+dy,+dy,=(—4e>+hxe™)+4(e™-2xe™)+4(xe™)=0.mr+stay

Page 7

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 7 preview image

Loading page image...

8.Ify,=cosx—cos2xandy,=sinx—cos2x,theny|=-sinx+2sin2x,y/=—cosx+4cos2x,andyj,=cosx+2sin2x,yj=—sinx+4cos2x.Hence=(-cosx+4cos2x)+(cosx—cos2x)=3cos2xand3+,=(-sinx+4cos2x)+(sinx—cos2x)=3cos2x.11.Ify=y=x7theny'=—-2x7and3"=6x",soX*Y"+5xy'+4y=x?(6x7*)+Sx(-2x7)+4(x?)=0.Ify=y,=x"Inxtheny'=x7-2x7Inxand3"=-5x"+6x*Inx,soXY"+5xy+4y=x?(-5x+6x7Inx)+Sx(x-2x7Inx)+4(xInx)=(-5x7+552)+(6x7~10x+42)Inx=0.13.Substitutionofy=e™into3y'=2ygivestheequation3re™=2¢™thatsimplifiesto3r=2.Thusr=2/3.14.Substitutionofy=e™into4y”"=ygivestheequation4r>e™=e™thatsimplifiesto472=1.Thusr=+1/2.15.Substitutionofy=e™intoy"+3'-2y=0givestheequationr’e™+re™—2¢™=0thatsimplifiesto72+7—-2=(r+2)(*—1)=0.Thusr=-2orr=1.16.Substitutionofy=e™into3y"+3y'—4y=0givestheequation3r%e™+3re™—4e™=0thatsimplifiesto37°+3r—4=0.Thequadraticformulathengivesthesolutions»=(-3+57)6.TheverificationsofthesuggestedsolutionsinProblems17-26aresimilartothoseinProblems1-12.WeillustratethedeterminationofthevalueofConlyinsometypicalcases.However,weillustratetypicalsolutioncurvesforeachoftheseproblems.2Chapter1StudyXY111a

Page 8

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 8 preview image

Loading page image...

17.C=218.C=30S—r:\|\\//03)©2)\///No))J1|\/||19.Ify(x)=Ce"~1theny(0)=5givesC~1=5,soC=6.Thefigureisontheleftbelow.|/||\ss//09\BREEPe/\7|JERI.20.Ify(x)=Ce™+x~1then»(0)=10givesC~1=10,soC=11.Thefigureisontherightabove.21.C=7.Thefigureisontheleftatthetopofthenextpage.istuancr111n

Page 9

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 9 preview image

Loading page image...

oTsLN|\\————Jo=——22.Ify(x)=In(x+C)theny(0)=0givesInC=0,soC=1.Thefigureisontherightabove.23.Ify(x)=$x°+Cx7theny(2)=1givestheequation%-32+C-%=1withsolutionC=-56.Thefigureisontheleftbelow.—~|/©5/3DN24.C=17.Thefigureisontherightabove.4Chapter1|||iv

Page 10

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 10 preview image

Loading page image...

25.Ify(x)=tan(x”+C)then¥(0)=1givestheequationtanC=1.HenceonevalueofCisC=m/4(asisthisvalueplusanyintegralmultipleof7).ht)“1[]1226.Substitutionofx=7andy=0intoy=(x+C)cosxyieldstheequation0=@=+C)-1),s0C=—7.:LAAN27.y=x+ySection1.15|1||.

Page 11

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 11 preview image

Loading page image...

28.Theslopeofthelinethrough(x,y)and(x/2,0)is»'=(y=0)/(x—x/2)=2y/x,sothedifferentialequationisxy’=2y.29.Ifm="istheslopeofthetangentlineandnm’istheslopeofthenormallineat(x,),thentherelationmm'=—1yieldsm'=1/y"=(y~1)/(x~0).Solutionfory'thengivesthedifferentialequation(1-y)y'=x.30.Herem=)andm'=D,(x’+k)=2x,sotheorthogonalityrelationmm'=—1givesthedifferentialequation2x)’=—1.31.Theslopeofthelinethrough(x,y)and(-y,x)isy'=(x-y)/(=y—x),sothedifferentialequationis(x+y)y'=y—x.InProblems32-36wegetthedesireddifferentialequationwhenwereplacethe"timerateofchange"ofthedependentvariablewithitsderivative,theword"is"withthe=sign,thephrase"proportionalto"with%,andfinallytranslatetheremainderofthegivensentenceintosymbols.32.dP/dt=KP33.dv/dt=kV?34.dv/dt=k(250-v)35.dN/dt=k(P-N)36.dN/dt=kN(P-N)37.Thesecondderivativeofanylinearfunctioniszero,sowespotthetwosolutionsy(x)=1orp(x)=xofthedifferentialequationy"=0.38.Afunctionwhosederivativeequalsitself,andhenceasolutionofthedifferentialequationy'=yisy(x)=€*.39. Wereasonthatify=kx’,theneachterminthedifferentialequationisamultipleofx.Thechoicek=1balancestheequation,andprovidesthesolutiony(x)=x*.40.Ifyisaconstant,then»'=0sothedifferentialequationreducestoy?=1.Thisgivesthetwoconstant-valuedsolutionsy(x)=1andy(x)=—1.6Chapter1StudyXY|||r1

Page 12

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 12 preview image

Loading page image...

41.Wereasonthatify=e”,theneachterminthedifferentialequationisamultipleofe*.Thechoicek=1balancestheequation,andprovidesthesolutiony(x)=Le*.42.Twofunctions,eachequalingthenegativeofitsownsecondderivative,arethetwosolutionsy(x)=cosxandy(x)=sinxofthedifferentialequationy"=-y.43.(a)Weneedonlysubstitutex(t)=1/(C—kf)inbothsidesofthedifferentialequationx'=kx?foraroutineverification.(b)Thezero-valuedfunctionx(#)=0obviouslysatisfiestheinitialvalueproblemx’=kx?,x(0)=0.44.(a)Thefigureontheleftbelowshowstypicalgraphsofsolutionsofthedifferentialequationx'=1x’.-(b)Thefigureontherightaboveshowstypicalgraphsofsolutionsofthedifferentialequationx'=—1x’.Weseethatwhereasthegraphswithk=1appearto"divergetoinfinity"eachsolutionwithk=—1appearstoapproach0as¢—co.Indeed,weseefromtheProblem43(a)solutionx(r)=1/(C—4r)thatx(f)>was2C.However,withk=—1itisclearfromtheresultingsolutionx(t)=1/(C+11)thatx(#)remainsboundedonanyfiniteinterval,butx(f)=>0asf—>+o.45.SubstitutionofP'=1andP=10intothedifferentialequationP'=kP?givesk=<,soProblem43(a)yieldsasolutionoftheformP(f)=1/(C~#/100).TheinitialconditionP(0)=2nowyieldsC=1,sowegetthesolutionSection1.17StudyXY|||iH

Page 13

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 13 preview image

Loading page image...

1100P(t)=——=——,©1_1t 50-¢2100WenowfindreadilythatP=100whent=49,andthatP=1000when¢=49.9.ItappearsthatPgrowswithoutbound(andthus"explodes")as¢approaches50.46.Substitutionofv'=-1andv=5intothedifferentialequationv'=kv?givesk==,soProblem43(a)yieldsasolutionoftheformv(f)=1/(C+¢/25).Theinitialconditionv(0)=10nowyieldsC=,sowegetthesolution1501)=—-=——.0=TLTSex1025Wenowfindreadilythatv=1when#=22.5,andthatv=0.1when¢=247.5.Itappearsthatvapproaches0as¢increaseswithoutbound.Thustheboatgraduallyslows,butnevercomestoa"fullstop"inafiniteperiodoftime.47.(a)y(10)=10yields10=1/(C-10),soC=101/10.(b)ThereisnosuchvalueofC,buttheconstantfunctiony(x)=0satisfiestheconditionsy'=»?andy(0)=0.(©)Itisobviousvisually(inFig.1.1.8ofthetext)thatoneandonlyonesolutioncurvepassesthrougheachpoint(a,b)ofthexy-plane,soitfollowsthatthereexistsauniquesolutiontotheinitialvalueproblemy'=3?,y(a)=bh.48.(b)Obviouslythefunctionsu(x)=—x*andv(x)=+x*bothsatisfythedifferentialequationxy’=4.Buttheirderivatives#'(x)=-4x"andv(x)=+4x’matchatx=0,wherebotharezero.Hencethegivenpiecewise-definedfunctiony(x)isdifferentiable,andthereforesatisfiesthedifferentialequationbecauseu(x)andv(x)doso(forx<0andx20,respectively).©Ifa>0(forinstance),chooseC,fixedsothatC,a*=b.Thenthefunctionx)=Cxtifx<0,7Cx*ifx20satisfiesthegivendifferentialequationforeveryrealnumbervalueofC._.8Chapter1StudyXY|||[i

Page 14

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 14 preview image

Loading page image...

SECTION1.2INTEGRALSASGENERALANDPARTICULARSOLUTIONSThissectionintroducesgeneralsolutionsandparticularsolutionsintheverysimplestsituationadifferentialequationoftheformy'=f(x)whereonlydirectintegrationandevaluationoftheconstantofintegrationareinvolved.Studentsshouldreviewcarefullytheelementaryconceptsofvelocityandacceleration,aswellasthefpsandmksunitsystems.1.Integrationofy'=2x+1yieldsy(x)=Jex+1dx=x*+x+C.Thensubstitutionofx=0,y=3gives3=0+0+C=C,soy(x)=x+x+3.2.Integrationofy'=(x-2)*yieldsy(x)=fox—2)%dx=1(x-2)’+C.Thensubstitutionofx=2,y=1gives1=0+C=C,soy(x)=T(x-2)°+1.3.Integrationofy'=+xyieldsy(x)=|Vxdx=2x+C.Thensubstitutionofx=4,y=0gives0=%+C,soy(x)=3(x**-8).4.Integrationofy'=x7yieldsy(x)=fx?dx=—1/x+C.Thensubstitutionofx=1,y=5gives5=-1+C,soy(x)=-1/x+6.S.Integrationofy=(x+2)™?yieldsy(x)=fx+2)?dx=2Jx+2+C.Thensubstitutionofx=2,y=-1gives—1=2-2+C,sop(x)=2/x+2-5.6.Integrationofy'=x(x*+9)"?yieldsy(x)=fre?+9)dx=L(x?+9)?+C.Thensubstitutionofx=-4,y=0gives0=15’+C,soyx)=Hx?+9)y"2~125].7.Integrationof»'=10/(x"+1)yieldsp(x)=fron?+1)dx=10tan™x+C.Thensubstitutionofx=0,y=0gives0=10-0+C,sop(x)=10tan'x.8.Integrationofy'=cos2xyieldsy(x)=feos2xax=1sin2x+C.Thensubstitutionofx=0,y=1gives1=0+C,soy(x)=1sin2x+1.9.Integrationofy'=1/v1-xyieldsy(x)=furV1-x*dx=sin"x+C.Thensubstitutionofx=0,y=0gives0=0+C,sop(x)=sin”x.Section1.29I~StudyXY|||!i

Page 15

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 15 preview image

Loading page image...

10.Integrationofy'=xe™yieldsy(x)=[xeax=Jue*au=(u-De"=—(x+De*+C(whenwesubstitute#=—xandapplyFormula#46insidethebackcoverofthetextbook).Thensubstitutionofx=0,y=1gives1=-1+C,soy(x)=—(x+1)e+2.11.Ifa(t)=50thenv(t)=Js0a=50t+v,=50¢+10.Hencex(t)=J(50¢+10)dr=2512+101+x,=257+101+20.12.Ifa(f)=-20thenv(f)=f(=20)ar=~20f+v,=—20r-15.HenceX(t)=[(2201-15)dr=~107~15t+x,=—10£~15¢+5.13.Ifa(t)=31thenv(¢)=[3tdt=$£+v,=+5.Hencex(t)=[Ge+5)dr=184514x,=1+5¢.4.Ifa(n)=2r+1thenv(t)=[Qr+1)dr=+1+v,=+17.Hence©)=[(+t-Ndt=LF+11-Tr+x,=LF+11-Tt+4.15.Ifaf)=4(+3).thenv(t)=[4(+3)dr=4(+3)°+C=4(1+3)=37(takingC=-37sothatv(0)=-1).Hencex(t)=[$437-37]dr=2(+3)'-37+C=L(t+3)'~37r-26.16.Ifa()=1/i+4thenv()=[1/i+ddi=2Ji+4+C=2Ji+4-5(takingC=-5sothatv(0)=-1).HenceX(t)=[@VI+A-5)dr=$0+4y7=51+C=$(t+4)?—51-2(takingC=-29/3sothatx(0)=1).10Chapter1|||[:

Page 16

Solution Manual for Elementary Differential Equations with Boundary Value Problems (Classic Version), 6th Edition - Page 16 preview image

Loading page image...

17.Ifa(t)=(t+1)7thenv(r)=f+?dt=1+)?+C=L(+)?+4(takingC=1sothatv(0)=0).Hencex0)=[[-3e+D)?+4]dr=Le+)'+41+C=a++e-1](takingC=—1sothatx(0)=0).18.Ifa(t)=50sin5tthenv(t)=[50sinstdt=—10cos5t+C=—10cos5t(takingC=0sothatv(0)=-10).HenceX(t)=[(-10cos5t)dr=~2sinS5t+C=—2sin5t+10(takingC=-10sothatx(0)=8).19.Notethatv(r)=5for0<¢<5andthatv(r)=10—¢for5<¢<10.Hencex(@)=5t+Cfor0<r<5andx(r)=10r-4r*+C,for5<¢<10.NowC,=0becausex(0)=0,andcontinuityofx()requiresthatx(f)=>5¢andx(t)=106-1¢+C,agreewhen¢=35.ThisimpliesthatC,=-%,andwegetthefollowinggraph.a>y%246810tSection1.211StudyXY|||!I
Preview Mode

This document has 604 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all