Solution Manual for Elementary Linear Algebra, 2nd Edition

Get the textbook answers you need with Solution Manual for Elementary Linear Algebra, 2nd Edition, a solutions manual packed with clear and concise explanations.

Jackson Roberts
Contributor
4.4
45
5 months ago
Preview (16 of 243 Pages)
100%
Purchase to unlock

Page 1

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 1 preview image

Loading page image...

Elementary Linear AlgebraA Matrix ApproachSpenceInselFriedbergSecond Edition

Page 2

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 3 preview image

Loading page image...

Elementary Linear AlgebraA Matrix ApproachSpenceInselFriedbergSecond EditionInstructor’s Manual

Page 4

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 4 preview image

Loading page image...

Page 5

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 5 preview image

Loading page image...

Page 6

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 6 preview image

Loading page image...

Page 7

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 7 preview image

Loading page image...

Page 8

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 8 preview image

Loading page image...

Page 9

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 9 preview image

Loading page image...

Page 10

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 10 preview image

Loading page image...

Chapter1Matrices, Vectors, andSystems of LinearEquations1.1MATRICES AND VECTORS1.»8420121642.»2153413.»642481044.»83111318115.24240648356.244711019357.»3135758.244711019359.242314513510.»11711311.241203243512.241203243513.»3124156214.26641206153906377515.»624821012416.»84200106417.not possible18.»7334103419.266471303344377520.»1141232524221.not possible22.2664124420824168377523.266471303344377524.266471303344377525.226.027.24302π3528.2421.653529.»22e30.»0.4031.[23 0.4]32.[2e12 0]33.2415015031035mph34.(a)The swimmer’s velocity isu=»22mph.EastNorth...................................................45xyswimmer instill waterFigure for Exercise 34(a)1

Page 11

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 11 preview image

Loading page image...

2Chapter 1Matrices, Vectors, and Systems of Linear Equations(b)The water’s velocity isv=»01mph.Sothe new velocity of the swimmer isu+v=»22 + 1mph. The correspond-ing speed isp5 + 222.798 mph.67EastNorth...................................................45xywater currentcombinedvelocityFigure for Exercise 34(b)35.(a)»1502 + 501502mph(b)50p37 + 62337.21 mph36.The three components of the vector represent,respectively, the average blood pressure, averagepulse rate, and the average cholesterol readingof the 20 people.37.True38.True39.True40.False, a scalar multiple of the zero matrix is thezero matrix.41.False, the transpose of anm×nmatrix is ann×mmatrix.42.True43.False, the rows ofBare 1×4 vectors.44.False, the (3,4)-entry of a matrix lies in row 3and column 4.45.True46.False, anm×nmatrix hasmnentries.47.True48.True49.True50.False, matrices must have the same size to beequal.51.True52.True53.True54.True55.True56.True57.Suppose thatAandBarem×nmatrices.(a)Thejth column ofA+Bandaj+bjarem×1 vectors. Theith component of thejth column ofA+Bis the (i, j)-entry ofA+B, which isaij+bij. By definition, theith components ofajandbjareaijandbij, respectively. So theith component ofaj+bjis alsoaij+bij.Thus thejthcolumns ofA+Bandaj+bjare equal.(b)The proof is similar to the proof of (a).58.SinceAis anm×nmatrix, 0Ais also anm×nmatrix. Because the (i, j)-entry of 0Ais 0aij=0, we see that 0Aequals them×nzero matrix.59.SinceAis anm×nmatrix, 1Ais also anm×nmatrix. Because the (i, j)-entry of 1Ais 1aij=aij, we see that 1AequalsA.60.Because bothAandBarem×nmatrices, bothA+BandB+Aarem×nmatrices. The (i, j)-entry ofA+Bisaij+bij, and the (i, j)-entryofB+Aisbij+aij. Sinceaij+bij=bij+aijby the commutative property of addition of realnumbers, the (i, j)-entries ofA+BandB+Aareequal for alliandj.Thus, since the matricesA+BandB+Ahave the same size and allpairs of corresponding entries are equal,A+B=B+A.61.IfOis them×nzero matrix, then bothAandA+Oarem×nmatrices;so we needonly show they have equal corresponding en-tries. The (i, j)-entry ofA+Oisaij+ 0 =aij,which is the (i, j)-entry ofA.62.The proof is similar to the proof of Exercise 61.63.The matrices (st)A,tA, ands(tA) are allm×nmatrices; so we need only show that the corre-sponding entries of (st)Aands(tA) are equal.The (i, j)-entry ofs(tA) isstimes the (i, j)-entry oftA, and so it equalss(taij) =st(aij),which is the (i, j)-entry of (st)A.Therefore(st)A=s(tA).64.The matrices (s+t)A,sA, andtAarem×nma-trices. Hence the matrices (s+t)AandsA+tAarem×nmatrices; so we need only show theyhave equal corresponding entries.The (i, j)-entry ofsA+tAis the sum of the (i, j)-entriesofsAandtA, that is,saij+taij. And the (i, j)-entry of (s+t)Ais (s+t)aij=saij+taij.65.The matrices (sA)TandsATaren×mmatri-ces; so we need only show they have equal corre-sponding entries. The (i, j)-entry of (sA)Tis the(j, i)-entry ofsA, which issaji. The (i, j)-entryofsATis the product ofsand the (i, j)-entry ofAT, which is alsosaji.66.The matrixATis ann×mmatrix; so the ma-trix (AT)Tis anm×nmatrix.Thus we needonly show that (AT)TandAhave equal corre-sponding entries.The (i, j)-entry of (AT)Tis

Page 12

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 12 preview image

Loading page image...

1.2Linear Combinations, Matrix-Vector Products, and Special Matrices3the (j, i)-entry ofAT, which in turn is the (i, j)-entry ofA.67.Ifi6=j, then the (i, j)-entry of a square zeromatrix is 0. Because such a matrix is square, itis a diagonal matrix.68.IfBis a diagonal matrix, thenBis square.HencecBis square, and the (i, j)-entry ofcBiscbij=c·0 = 0 ifi6=j. ThuscBis a diagonalmatrix.69.IfBis a diagonal matrix, thenBis square. SinceBTis the same size asBin this case,BTissquare.Ifi6=j, then the (i, j)-entry ofBTisbji= 0. SoBTis a diagonal matrix.70.Suppose thatBandCaren×ndiagonal ma-trices.ThenB+Cis also ann×nmatrix.Moreover, ifi6=j, the (i, j)-entry ofB+Cisbij+cij= 0 + 0 = 0.SoB+Cis a diagonalmatrix.71.»2558and242565786843572.LetAbe a symmetric matrix.ThenA=AT.So the (i, j)-entry ofAequals the (i, j)-entry ofAT, which is the (j, i)-entry ofA.73.LetObe a square zero matrix. The (i, j)-entryofOis zero, whereas the (i, j)-entry ofOTis the(j, i)-entry ofO, which is also zero. SoO=OT,and henceOis a symmetric matrix.74.By Theorem 1.2(b), (cB)T=cBT=cB.75.By Theorem 1.1(a) and Theorem 1.2(a) and (c),we have(B+BT)T=BT+ (BT)T=BT+B=B+BT.76.By Theorem 1.2(a), (B+C)T=BT+CT=B+C.77.No. Consider2425657868435and»2658.78.LetAbe a diagonal matrix. Ifi6=j, thenaij=0 andaji= 0 by definition. Also,aij=ajiifi=j. So every entry ofAequals the correspondingentry ofAT. ThereforeA=AT.79.The (i, i)-entries must all equal zero. By equat-ing the (i, i)-entries ofATandA, we obtainaii=aii, and soaii= 0.80.TakeB=»0110.IfCis any 2×2 skew-symmetric matrix, thenCT=C.Thereforec12=c21. By Exercise 79,c11=c22= 0. SoC=»0c21c210=c21»0110=c21B.81.LetA1=12(A+AT) andA2=12(AAT). Itis easy to show thatA=A1+A2. By Exercises75 and 74,A1is symmetric. Also, by Theorem1.2(b), (a), and (c), we haveAT2= 12 (AAT)T= 12 [AT(AT)T]= 12 (ATA) =12 (AAT) =A2.82.(a)Because the (i, i)-entry ofA+Bisaii+bii,we havetrace(A+B)= (a11+b11) +· · ·+ (ann+bnn)= (a11+· · ·+ann) + (b11+· · ·+bnn)= trace(A) + trace(B).(b)The proof is similar to the proof of (a).(c)The proof is similar to the proof of (a).83.Theith component ofap+bqisapi+bqi, whichis nonnegative. Also, the sum of the componentsofap+bqis(ap1+bq1) +· · ·+ (apn+bqn)=a(p1+· · ·+pn) +b(q1+· · ·+qn)=a(1) +b(1) =a+b= 1.84.(a)2666646.50.51.92.89.62.91.53.017.40.415.55.21.03.77.317.55.21.43.516.8377775(b)2666641.33.44.010.43.04.92.46.63.94.19.48.61.70.114.50.24.74.10.71.8377775(c)26643.97.410.30.11.90.80.31.12.52.32.60.27.29.72.11.60.20.611.610.637751.2LINEAR COMBINATIONS,MATRIX-VECTOR PRODUCTS,AND SPECIAL MATRICES1.»12142.24547353.249010354.»22325.»ab6.[18]7.»2258.24abc35

Page 13

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 13 preview image

Loading page image...

4Chapter 1Matrices, Vectors, and Systems of Linear Equations9.24satbuc3510.[6]11.2426103512.243423513.»1614.243123515.»211316.»26917.12»2222,12»2218.»1001,e119.12»1331, 12»3333 + 120.12»3113, 12»321 + 2321.12»3113,12»3333 + 122.12»1111,12»1323.»3224.12»43 + 13425.12»3333 + 126.12»25323 + 527.12»33328.»3129.»11= (1)»10+ (1)»0130.»11= 14»4431.not possible32.»11= (1)»10+ (1)»0133.not possible34.»11= (1)»10+ (1)»01+ 0»0035.»111= 3»13+ (2)»2136.»11= 0»10+ 0»01+ (1)»1137.»38= 7»12+ (2)»23+ 0»2538.»ab=a+ 2b3« »11+ab3« »2139.not possible40. u= 42401235+ (2)241303541.u= 02421235+ 12432135+ 0244133542.u= 52410035+ 62401035+ 7240013543.u= (4)2410035+ (5)2401035+ (6)240013544.u= 02411135+ 02402335+ 1241323545.True46.False.If the coefficients of the linear combina-tion 3»22+ (6)»11=»00were positive, thesum could not equal the zero vector.47.True48.True49.True50.False, the matrix-vector product of a 2×3 ma-trix and a 3×1 vector is a 2×1 vector.51.False, the matrix-vector product is a linear com-bination of thecolumnsof the matrix.52.False, the product of a matrix and a standardvector is a column of the matrix.53.True54.False, the matrix-vector product of anm×nmatrix and a vector inRnyields a vector inRm.55.False, every vector inR2is a linear combinationof twononparallelvectors.56.True57.False, a standard vector is a vector with a singlecomponent equal to 1 and the others equal to 0.58.True59.False, considerA=»1111andu=»11.60.True61.False,Aθuis the vector obtained by rotatinguby acounterclockwiserotation of the angleθ.62.False, considerA=»1111,u=»11, andv=»22.63.True64.True65.Ifθ= 0, thenAθ=I2. SoAθv=I2v=vbyTheorem 1.3(h).66.We haveA180v=»1001v=I2v=v.

Page 14

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 14 preview image

Loading page image...

1.2Linear Combinations, Matrix-Vector Products, and Special Matrices567.Letv=»ab. ThenAθ(Aβv)=»cosθsinθsinθcosθ– „»cosβsinβsinβcosβ– »ab–«=»cosθsinθsinθcosθ– »acosβbsinβasinβ+bcosβ=»acosθcosβbcosθsinβasinθcosβbsinθsinβ+»asinθsinβbsinθcosβacosθsinβ+bcosθcosβ=»acos (θ+β)bsin (θ+β)asin (θ+β) +bcos (θ+β)=Aθ+βv.68.Letu=»ab. ThenATθ(Aθu)=»cosθsinθsinθcosθ– „»cosθsinθsinθcosθ– »ab–«=»cosθsinθsinθcosθ– »acosθbsinθasinθ+bcosθ=»acos2θbsinθcosθasinθcosθ+bsin2θ+»asin2θ+bsinθcosθasinθcosθ+bcos2θ=»a(sin2θ+ cos2θ)b(sin2θ+ cos2θ)=»ab=u.Similarly,Aθ(ATθu) =u.69.(a)As in Example 3, the populations are givenby the entries ofA»400300=»349351;sothere will be 349,000 people in the city and351,000 in the suburbs.(b)ComputingA»349351=»307.180392.820, we seethat there will be 307,180 people in thecity and 392,820 in the suburbs.70.Au=a2414735+b2425835+c243693571.Au=»1001– »ab=»ab, the reflection ofuabout they-axis72.We haveA(Au) =A„»1001– »ab–«=»1001– »ab=»ab=u.73.B=»100174.(a)C=A180=»1001(b)We haveA(Cu) =»1001– „»1001– »ab–«=»1001– »ab=»ab.In a similar fashion, we haveC(Au)=»ab=BuandB(Cu) =C(Bu) =Au.(c)The first equation shows that reflectingabout thex-axis can be accomplished byeither first rotating by 180and then re-flecting about they-axis, or first reflect-ing about they-axis and then rotating by180.The second equation shows that reflectingabout they-axis may be accomplished ei-ther by first rotating by 180and then re-flecting about thex-axis, or first reflect-ing about thex-axis and then rotating by180.75.Au=»a0, the projection ofuon thex-axis76.This exercise is similar to Exercise 72.77.Ifv=»a0, thenAv=»1000– »a0=»a0=v.78.B=»000179.(a)We haveA(Cu) =»1000– „»1001– »ab–«=»1000– »ab=»a0,andC(Au) =»1001– „»1000– »ab–«

Page 15

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 15 preview image

Loading page image...

6Chapter 1Matrices, Vectors, and Systems of Linear Equations=»1001– »a0=»a0.(b)Rotating a vector by 180and then pro-jecting the result on thex-axis is equiva-lent to projecting a vector on thex-axisand then rotating the result by 180.80.The sum of the two linear combinationsau1+bu2andcu1+du2is(au1+bu2)+(cu1+du2) = (a+c)u1+(b+d)u2,which is also a linear combination ofu1andu2.81.Writev=a1u1+a2u2andw=b1u1+b2u2,wherea1,a2,b1, andb2are scalars.A linearcombination ofvandwhas the formcv+dw=c(a1u1+a2u2) +d(b1u1+b2u2)= (ca1+db1)u1+ (ca2+db2)u2,which is also a linear combination ofu1andu2.82.The proof is similar to that of Exercise 81.83.We haveA(cu) = (cu1)a1+ (cu2)a2+· · ·+ (cun)an=c(u1a1+u2a2+· · ·+unan) =c(Au).Similarly, (cA)u=c(Au).84.We have(A+B)u=u1(a1+b1) +· · ·+un(an+bn)=u1a1+u1b1+· · ·+unan+unbn= (u1a1+· · ·+unan)+ (u1b1+· · ·+unbn)=Au+Bu.85.We haveAej=0a1+· · ·+ 0aj1+ 1aj+ 0aj+1+· · ·+ 0an=aj.86.SupposeBw=Awfor allw. Letw=ej. ThenBej=Aej.From Theorem 1.3(e), it followsthatbj=ajfor allj. SoB=A.87.The vectorA0is anm×1 vector. By definitionA0= 0a1+ 0a2+· · ·+ 0an=0.88.Every column ofOis them×1 zero vector. SoOv=v10+v20+· · ·+vn0=0.89.Thejth column ofInisej. SoInv=v1e1+v2e2+· · ·+vnen=v.90.Usingp=»400300, we computeAp, A(Ap), . . .until we have ten vectors. From the final vector,we see that there will be 155,610 people living inthe city and 544,389 people living in the suburbsafter ten years.91.(a)266424.645.026.041.43775(b)2664134.144.47.6104.83775(c)2664128.480.663.525.83775(d)2664653.09399.77528.23394.5237751.3SYSTEMS OF LINEAR EQUATIONS1.(a)»012130(b)»012013012.(a)ˆ213˜(b)ˆ2134˜3.(a)2412133435(b)24123132341354.(a)»10212101(b)»10213210105.(a)2402311220135(b)24023411262010356.(a)24121712010244835(b)241217512010324487357.24024422631111023358.2433069263110244235

Page 16

Solution Manual for Elementary Linear Algebra, 2nd Edition - Page 16 preview image

Loading page image...

1.3Systems of Linear Equations79.241102304335024423510.242631111023024423511.241102326311012213512.24110232015135024423513.2411023263118268063514.241102326311204843515.2664240111246321377516.266641201212122463213777517.2664120111006321377518.2664120111246041377519.2664120246111321377520.2664120321246111377521.2664120111246103377522.2664102111246321377523.Yes, because 1(1)4(2) + 3(1)=6 and1(5)2(1) =3. Alternatively,»14030012266412513775=»63.24.No, because 1(2)4(0) + 3(1) = 56= 6. Alter-natively, ifAis the coefficient matrix, and thegiven vector isv, thenAv=»536=»63.25.No, because the left side of the second equationyields 1(2)2(1) = 06=3. Alternatively,»14030012266430213775=»606=»63.26.Yes, the components of the vector satisfy bothequations.Alternatively, if the given vector isv, thenAv=»63.27.no28.yes29.yes30.yes31.yes32.no33.yes34.yes35.no36.yes37.no38.no39.x1= 2 +x2x2free40.x1=4x2=541.x1= 6 + 2x2x2free42.x1= 5 + 4x2x2free43.not consistent44.x1=6x2=345.x1= 4 + 2x2x2freex3= 346.not consistent47.x1=3x4x2=4x4x3=5x4x4freeand2664x1x2x3x43775=x426643451377548.x1= 9 +x33x4x2= 82x3+ 5x4x3freex4freeand2664x1x2x3x43775=x3266412103775+x4266435013775+26649800377549.x1freex2=3x3=4x4=5and2664x1x2x3x43775=x1266410003775+26640345377550.x1=3 + 2x2x2freex3=4x4=5and2664x1x2x3x43775=x2266421003775+26643045377551.x1= 63x2+ 2x4x2freex3= 74x4x4freeand2664x1x2x3x43775=x2266431003775+x4266420413775+266460703775
Preview Mode

This document has 243 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all