Solution Manual For Introduction To Mathematical Statistics, 7th Edition

Gain deeper insight into your textbook problems with Solution Manual For Introduction To Mathematical Statistics, 7th Edition, featuring well-explained solutions.

John Doe
Contributor
4.7
37
5 months ago
Preview (16 of 109 Pages)
100%
Purchase to unlock

Page 1

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 1 preview image

Loading page image...

SOLUTIONSMANUALINTRODUCTION TOMATHEMATICALSTATISTICSSEVENTHEDITIONRobert HoggUniversity of IowaJoseph McKeanWestern Michigan UniversityAllen Craig

Page 2

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 3 preview image

Loading page image...

Contents1Probability and Distributions12Multivariate Distributions113Some Special Distributions194Some Elementary Statistical Inferences315Consistency and Limiting Distributions496Maximum Likelihood Methods537Sufficiency658Optimal Tests of Hypotheses779Inferences about Normal Models8310 Nonparametric and Robust Statistics9311 Bayesian Statistics103iii

Page 4

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 4 preview image

Loading page image...

Chapter 1Probability and Distributions1.2.1 Part (c):C1C2={(x, y) : 1< x <2,1< y <2}.1.2.3C1C2={mary,mray}.1.2.6Ck={x: 1/kx1(1/k)}.1.2.7Ck={(x, y) : 0x1/k,0y1/k}.1.2.8 limk→∞Ck={x: 0< x <3}.Note: neither the number 0 nor the number 3is in any of the setsCk,k= 1,2,3, . . .1.2.9 Part (b): limk→∞Ck=φ, because no point is in all the setsCk,k= 1,2,3, . . .1.2.11 Becausef(x) = 0 when 1x <10,Q(C3) =100f(x)dx=106x(1x)dx= 1.1.2.13 Part (c): Draw the regionCcarefully, noting thatx <2/3 because 3x/2<1.ThusQ(C) =2/30[3x/2x/2dy]dx=2/30x dx= 2/9.1.2.16 Note that25 =Q(C) =Q(C1) +Q(C2)Q(C1C2) = 19 + 16Q(C1C2).Hence,Q(C1C2) = 10.1.2.17 By studying a Venn diagram with 3 intersecting sets, it should be true that118 + 6 + 5321 = 13.It is not, and the accuracy of the report should be questioned.1

Page 5

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 5 preview image

Loading page image...

2Probability and Distributions1.3.3P(C) = 12 + 14 + 18 +· · ·=1/21(1/2) = 1.1.3.6P(C) =−∞e−|x|dx=0−∞exdx+0exdx= 26= 1.We must multiply by 1/2.1.3.8P(Cc1Cc2) =P[(C1C2)c] =P(C) = 1,becauseC1C2=φandφc=C.1.3.11 The probability that he does not win a prize is(9905)/(10005).1.3.13 Part (a):We must have 3 even or one even, 2 odd to have an even sum.Hence, the answer is(103)(100)(203)+(101)(102)(203).1.3.14 There are 5 mutual exclusive ways this can happen: two “ones”, two “twos”,two “threes”, two “reds”, two “blues.” The sum of the corresponding proba-bilities is(22)(60)+(22)(60)+(22)(60)+(52)(30)+(32)(50)(82).1.3.15(a)1(485)(20)(505)(b)1(48n)(20)(50n)12,Solve for n.1.3.20 Choose an integern0>max{a1,(1a)1}. Then{a}=n=n0(a1n, a+1n).Hence by (1.3.10),P({a}) =limn→∞P[(a1n , a+ 1n)]= 2n= 0.1.4.2P[(C1C2C3)C4] =P[C4|C1C2C3]P(C1C2C3),and so forth. That is, write the last factor asP[(C1C2)C3] =P[C3|C1C2]P(C1C2).

Page 6

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 6 preview image

Loading page image...

31.4.5[(43)(4810)+(44)(489)]/(5213)[(42)(4811)+(43)(4810)+(44)(489)]/(5213).1.4.10P(C1|C) =(2/3)(3/10)(2/3)(3/10) + (1/3)(8/10) = 37<23 =P(C1).1.4.12 Part (c):P(C1Cc2)=1P[(C1Cc2)c] = 1P(C1C2)=1(0.4)(0.3) = 0.88.1.4.14 Part (d):1(0.3)2(0.1)(0.6).1.4.16 1P(T T) = 1(1/2)(1/2) = 3/4, assuming independence and thatHandTare equilikely.1.4.19 LetCbe the complement of the event; i.e.,Cequals at most 3 draws to getthe first spade.(a)P(C) =14+3414+(34)2 14.(b)P(C) =14+13513952+135038513952.1.4.22 The probability that A wins isn=0(5646)n16=38.1.4.27 LetYdenote the bulb is yellow and letT1andT2denote bags of the first andsecond types, respectively.(a)P(Y) =P(Y|T1)P(T1) +P(Y|T2)P(T2) = 2025.6 + 1025.4.(b)P(T1|Y) =P(Y|T1)P(T1)P(Y).1.4.30 Suppose without loss of generality that the prize is behind curtain 1.Con-dition on the event that the contestant switches.If the contestant choosescurtain 2 then she wins, (In this case Monte cannot choose curtain 1, so hemust choose curtain 3 and, hence, the contestant switches to curtain 1). Like-wise, in the case the contestant chooses curtain 3. If the contestant choosescurtain 1, she loses. Therefore the conditional probability that she wins is23.1.4.31(1) The probability is 1(56)4.(2) The probability is 1[(56)2+1036]24.

Page 7

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 7 preview image

Loading page image...

4Probability and Distributions1.5.2 Part (a):c[(2/3) + (2/3)2+ (2/3)3+· · ·] =c(2/3)1(2/3) = 2c= 1,soc= 1/2.1.5.5 Part (a):p(x) ={(13x)(395x)(525)x= 0,1, . . . ,50elsewhere.1.5.9 Part (b):50x=1x/5050 =50(51)2(5050) =51202.1.5.10 For Part (c): LetCn={Xn}. ThenCnCn+1andnCn=R. Hence,limn→∞F(n) = 1. Letǫ >0 be given. Choosen0such thatnn0implies1F(n)< ǫ. Then ifxn0, 1F(x)1F(n0)< ǫ.1.6.2 Part (a):p(x) =(9x1)(10x1)111x=110,x= 1,2, . . .10.1.6.3(a)p(x) =(56)x1(16),x= 1,2,3, . . .(b)x=1(56)x1(16)=1/61(25/36) =611.1.6.8Dy={1,23,33, . . .}. The pmf ofYisp(y) =(12)y1/3,y∈ Dy.1.7.1 Ifx <10 thenF(x) =P[X(c) =c2x] =P(cx) =x0110dz=x10.Thusf(x) =F(x) ={120x0< x <1000elsewhere.1.7.2C2Cc1P(C2)P(Cc1) = 1(3/8) = 5/8.

Page 8

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 8 preview image

Loading page image...

51.7.4 Among other characteristics,−∞1π(1 +x2)dx= 1πarctanx−∞= 1π[π2(π2)]= 1.1.7.6 Part (b):P(X2<9)=P(3< X <3) =32x+ 219dx=118[x22 + 2x]32=118[212(2)]= 2536.1.7.8 Part (c):f(x) = 12 2xex= 0;hence,x= 2 is the mode because it maximizesf(x).1.7.9 Part (b):m03x2dx= 12 ;hence,m3= 21andm= (1/2)1/3.1.7.10ξ0.204x3dx= 0.2 :hence,ξ40.2= 0.2 andξ0.2= 0.21/4.1.7.13x= 1 is the mode because for 0< x <becausef(x)=F(x) =exex+xex=xexf(x)=xex+ex= 0,andf(1) = 0.1.7.16 Since ∆>0X > zY=X+ ∆> z.Hence,P(X > z)P(Y > z).1.7.19 Sincef(x) is symmetric about 0,ξ.25<0. So we need to solve,ξ.252(x4)dx=.25.The solution isξ.25=2.

Page 9

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 9 preview image

Loading page image...

6Probability and Distributions1.7.20 For 0< y <27,x=y1/3,dxdy= 13y2/3g(y) ==13y2/3y2/39=127.1.7.22f(x)=1π ,π2< x < π2.x=arctany,dxdy=11 +y2,−∞< y <.g(y)=1π11 +y2,−∞< y <.1.7.23G(y)=P(2 logX4y) =P(Xey/8) =1ey/84x3dx= 1ey/2,0< y <g(y)=G(y) ={ey/20< y <0elsewhere.1.7.24G(y)=P(X2y) =P(yXy)=yy13dx=2y30y <1y113dx=y3+131y <4g(y)=13y0y <116y1y <40elsewhere.1.8.4E(1/X) =100x=511x150.The latter sum is bounded by the two integrals101511xdxand100501xdx.An appropriate approximation might be150101.550.51x dx=150 (log 100.5log 50.5).

Page 10

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 10 preview image

Loading page image...

71.8.6E[X(1X)] =10x(1x)3x2dx.1.8.8 When 1< y <G(y)=P(1/Xy) =P(X1/y) =11/y2x dx= 11y2g(y)=2y3E(Y)=1y2y3dy= 2,which equals10(1/x)2x dx.1.8.10 The expectation ofXdoes not exist becauseE(|X|) = 2π0x1 +x2dx= 1π11u du=,where the change of variableu= 1 +x2was used.1.9.2M(t) =x=1(et2)x=et/21(et/2),et/2<1.FindE(X) =M(0) and Var(X) =M′′(0)[M(0)]2.1.9.40var(X) =E(X2)[E(X)]2.1.9.6E[(Xμσ)2]=1σ2σ2= 1.1.9.8K(b)=E[(Xb)2] =E(X2)2bE(X) +b2K(b)=2E(X) + 2b= 0b=E(X).1.9.11 For a continuous type random variable,K(t)=−∞txf(x)dx.K(t)=−∞xtx1f(x)dxK(1) =E(X).K′′(t)=−∞x(x1)tx2f(x)dxK′′(1) =E[X(X1)];and so forth.

Page 11

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 11 preview image

Loading page image...

8Probability and Distributions1.9.123=E(X7)E(X) = 10 =μ.11=E[(X7)2] =E(X2)14E(X) + 49 =E(X2)91E(X2) = 102 and var(X) = 102100 = 2.15=E[(X7)3].Expand (X7)3and continue.1.9.16E(X)=0var(X) =E(X2) = 2p.E(X4)=2pkurtosis = 2p/4p2= 1/2p.1.9.17ψ(t)=M(t)/M(t)ψ(0) =M(0)/M(0) =E(X).ψ′′(t)=M(t)M′′(t)M(t)M(t)[M(t)2]ψ′′(0) =M(0)M′′(0)M(0)M(0)[M(0)2]=M′′(0)[M(0)]2= var(X).1.9.19M(t) = (1t)3= 1 + 3t+ 3·4t22! + 3·4·5t33! +· · ·Considering the coefficient oftr/r!, we haveE(Xr) = 3·4·5· · ·(r+ 2),r= 1,2,3. . . .1.9.20 Integrating the parts withu= 1F(x),dv=dx, we get{[1F(x)]x}b0b0x[f(x)]dx=b0xf(x)dx=E(X).1.9.23E(X)=10x14dx+ 0·14 + 1·12 = 58.E(X2)=10x214dx+ 0·14 + 1·12 =712.var(X)=712(58)2=37192.1.9.24E(X) =−∞x[c1f1(x) +· · ·+ckfk(x)]dx=ki=1ciμi=μ.

Page 12

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 12 preview image

Loading page image...

9Because−∞(xμ)2fi(x)dx=σ2i+ (μiμ)2, we haveE[(Xμ)2] =ki=1ci[σ2i+ (μiμ)2].1.10.2μ=0xf(x)dx2μ2μf(x)dx= 2μP(X >2μ).Thus12P(X >2μ).1.10.4 If, in Theorem 1.10.2, we takeu(X) = exp{tX}andc= exp{ta}, we haveP(exp{tX} ≥exp{ta}]M(t) exp{−ta}.Ift >0, the events exp{tX} ≥exp{ta}andXaare equivalent. Ift <0,the events exp{tX} ≥exp{ta}andXaare equivalent.1.10.5 We haveP(X1)[1exp{−2t}]/2tfor all 0< t <, andP(X≤ −1)[exp{2t} −1]/2tfor all−∞< t <0. Each of these bounds has the limit 0 ast→ ∞andt→ −∞, respectively.

Page 13

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 13 preview image

Loading page image...

Page 14

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 14 preview image

Loading page image...

Chapter 2Multivariate Distributions2.1.2P(A5) = 784838 + 28 = 28.2.1.500[2g(x21+x22)x21+x22]dx1dx2=0π/20[2g(ρ)/πρ]ρ dθdρ=0g(ρ)= 1.2.1.6G(z)=P(X+Yz) =z0zx0exydydx=z0[1e(zx)]exdx= 1ezzez.g(z)=G(z) ={zez0< z <0elsewhere.2.1.7G(z)=P(XYz) = 11z1z/xdydx=11z(1zx)dx=zzlogzg(z)=G(z) ={logz0< z <10elsewhere.Why islogz >0?11

Page 15

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 15 preview image

Loading page image...

12Multivariate Distributions2.1.8f(x, y) =(13x)(13y)(2613xy)(5213)x0, y0, x+y13, xandyintegers0elsewhere.2.1.10P(X1+X21) = 151/20x21[∫1x1x1x2dx2]dx1.2.1.14E[et1X1+t2X2]=i=1j=1et1i+t2j(12)i+j=i=1(et112)ij=1(et112)j=[1121et11] [1121et21],providedti<log 2,i= 1,2.2.2.1p(y1, y2) ={ (23)y2(13)2y2(y1, y2) = (0,0),(1,1),(1,1),(0,2)0elsewhere.2.2.2p(y1, y2) ={y1/36y1=y2,2y2,3y2;y2= 1,2,30elsewhere.y1123469p(y1)1/364/366/364/3612/369/362.2.4 The inverse transformation is given byx1=y1y2andx2=y2with JacobianJ=y2. By noting what the boundaries of the spaceS(X1, X2) map into, itfollows that the spaceT(Y1, Y2) ={(y1, y2) : 0< yi<1, i= 1,2}. The pdf of(Y1, Y2) isfY1,Y2(y1, y2) = 8y1y32.2.2.5 The inverse transformation isx1=y1y2andx2=y2with JacobianJ= 1.The space of (Y1, Y2) isT={(y1, y2) :−∞< yi<, i= 1,2}.Thus thejoint pdf of (Y1, Y2) isfY1,Y2(y1, y2) =fX1,X2(y1y2, y2),which leads to formula (2.2.1).

Page 16

Solution Manual For Introduction To Mathematical Statistics, 7th Edition - Page 16 preview image

Loading page image...

132.3.2(a)c1x20x1/x22dx1=c12 = 1c1= 2 andc2= 5.(b)10x1x22,0< x1< x2<1; zero elsewhere(c)1/21/42x1/(5/8)2dx= 6425(14116)= 1225.(d)1/21/41x110x1x22dx2dx1=1/21/4103x1(1x31)dx1= 135512.2.3.3f2(x2)=x2021x21x32dx1= 7x62,0< x2<1.f1|2(x1|x2)=21x21x32/7x62= 3x21/x32,0< x1< x2.E(X1|x2)=x20x1(3x21/x32)dx1= 34x2.G(y)=P(34X2y)=4y/307x62dx2=(4y3)7,0< y <34g(y)={7(43)7y60< y <340elsewhere.E(Y)=7834 = 2132.Var(Y)=71024.E(X1)=2132.Var(X1)=55315360>71024.2.3.8 The marginal pdf ofXisfX(x) = 2xexeydy= 2e2x,0< x <.Hence, the conditional pdf ofYgivenX=xisfY|X(y|x) = 2exey2e2x=e(yx),0< x < y <,with conditional meanE(Y|X=x) =xye(yx)dy=x+ 1,x >0.
Preview Mode

This document has 109 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Subject
Statistics

Related Documents

View all