Solution Manual for Introduction to Mathematical Statistics, 8th Edition

Solution Manual for Introduction to Mathematical Statistics, 8th Edition is here to help you with textbook problems, offering clear solutions and helpful explanations.

John Doe
Contributor
4.1
52
5 months ago
Preview (16 of 138 Pages)
100%
Purchase to unlock

Page 1

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 1 preview image

Loading page image...

SOLUTIONSMANUALJOSEPHW.MCKEANINTRODUCTION TOMATHEMATICALSTATISTICSEIGHTHEDITIONRobert V. HoggUniversity of IowaJoseph W. McKeanWestern Michigan UniversityAllen T. CraigLate Professor of StatisticsUniversity of Iowa

Page 2

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 3 preview image

Loading page image...

Contents1Probability and Distributions12Multivariate Distributions113Some Special Distributions194Some Elementary Statistical Inferences315Consistency and Limiting Distributions536Maximum Likelihood Methods597Sufficiency758Optimal Tests of Hypotheses899Inferences about Normal Models9710 Nonparametric and Robust Statistics11311 Bayesian Statistics131iii

Page 4

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 4 preview image

Loading page image...

Chapter 1Probability and Distributions1.2.1 Part (c):C1C2={(x, y) : 1< x <2,1< y <2}.1.2.3C1C2={mary,mray}.1.2.6 limk→∞Ck={x: 0< x <3}.Note: neither the number 0 nor the number 3is in any of the setsCk,k= 1,2,3, . . .1.2.7 Part (b): limk→∞Ck=φ, because no point is in all the setsCk,k= 1,2,3, . . .1.2.9 Becausef(x) = 0 when 1x <10,Q(C3) =100f(x)dx=106x(1x)dx= 1.1.2.11 Part (c): Draw the regionCcarefully, noting thatx <2/3 because 3x/2<1.ThusQ(C) =2/30[3x/2x/2dy]dx=2/30x dx= 2/9.1.2.14 Note that25 =Q(C) =Q(C1) +Q(C2)Q(C1C2) = 19 + 16Q(C1C2).Hence,Q(C1C2) = 10.1.2.15 By studying a Venn diagram with 3 intersecting sets, it should be true that118 + 6 + 5321 = 13.It is not, and the accuracy of the report should be questioned.1.3.3P(C) = 12 + 14 + 18 +· · ·=1/21(1/2) = 1.1

Page 5

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 5 preview image

Loading page image...

2Probability and Distributions1.3.6P(C) =−∞e−|x|dx=0−∞exdx+0exdx= 2= 1.We must multiply by 1/2.1.3.8P(Cc1Cc2) =P[(C1C2)c] =P(C) = 1,becauseC1C2=φandφc=C.1.3.11 The probability that he does not win a prize is(9905)/(10005).1.3.13 Part (a):We must have 3 even or one even, 2 odd to have an even sum.Hence, the answer is(103)(100)(203)+(101)(102)(203).1.3.14 There are 5 mutual exclusive ways this can happen: two “ones”, two “twos”,two “threes”, two “reds”, two “blues.” The sum of the corresponding proba-bilities is(22)(60)+(22)(60)+(22)(60)+(52)(30)+(32)(50)(82).1.3.15(a)1(485)(20)(505)(b)1(48n)(20)(50n)12,Solve for n.1.3.20 Choose an integern0>max{a1,(1a)1}. Then{a}=n=n0(a1n, a+1n).Hence by (1.3.10),P({a}) =limn→∞P[(a1n , a+ 1n)]= 2n= 0.1.3.21 Choosen0such that 0< a(1/n0)< a < a+ (1/n0)<1.LetAn=(a(1/n), a+ (1/n)), fornn0. Since{a}=n=n0An, we haveP({a}) =P(n=n0An)=limn→∞P(An) =limn→∞2n= 0.

Page 6

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 6 preview image

Loading page image...

31.4.2P[(C1C2C3)C4] =P[C4|C1C2C3]P(C1C2C3),and so forth. That is, write the last factor asP[(C1C2)C3] =P[C3|C1C2]P(C1C2).1.4.5[(43)(4810)+(44)(489)]/(5213)[(42)(4811)+(43)(4810)+(44)(489)]/(5213).1.4.10P(C1|C) =(2/3)(3/10)(2/3)(3/10) + (1/3)(8/10) = 37<23 =P(C1).1.4.12 Part (c):P(C1Cc2)=1P[(C1Cc2)c] = 1P(C1C2)=1(0.4)(0.3) = 0.88.1.4.14 Part (d):1(0.3)2(0.1)(0.6).1.4.16 1P(T T) = 1(1/2)(1/2) = 3/4, assuming independence and thatHandTare equilikely.1.4.19 LetCbe the complement of the event; i.e.,Cequals at most 3 draws to getthe first spade.(a)P(C) =14+3414+(34)2 14.(b)P(C) =14+13513952+135038513952.1.4.22 The probability that A wins is: 1/6+5/6×4/6×3/6+5/6×4/6×3/6×2/6×5/6.1.4.26 LetYdenote the bulb is yellow and letT1andT2denote bags of the first andsecond types, respectively.(a)P(Y) =P(Y|T1)P(T1) +P(Y|T2)P(T2) = 2025.6 + 1025.4.(b)P(T1|Y) =P(Y|T1)P(T1)P(Y).1.4.30 Suppose without loss of generality that the prize is behind curtain 1.Con-dition on the event that the contestant switches.If the contestant choosescurtain 2 then she wins, (In this case Monte cannot choose curtain 1, so hemust choose curtain 3 and, hence, the contestant switches to curtain 1). Like-wise, in the case the contestant chooses curtain 3. If the contestant choosescurtain 1, she loses. Therefore the conditional probability that she wins is23.

Page 7

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 7 preview image

Loading page image...

4Probability and Distributions1.4.31(1) The probability is 1(56)4.(2) The probability is 1[(56)2+1036]24.1.5.2 Part (a):c[(2/3) + (2/3)2+ (2/3)3+· · ·] =c(2/3)1(2/3) = 2c= 1,soc= 1/2.1.5.5 Part (a):p(x) ={(13x)(395x)(525)x= 0,1, . . . ,50elsewhere.1.5.9 Part (b):50x=1x/5050 =50(51)2(5050) =51202.1.5.10 For Part (c): LetCn={Xn}. ThenCnCn+1andnCn=R. Hence,limn→∞F(n) = 1. Let >0 be given. Choosen0such thatnn0implies1F(n)< . Then ifxn0, 1F(x)1F(n0)< .1.6.2 Part (a):p(x) =(9x1)(10x1)111x=110,x= 1,2, . . .10.1.6.3(a)p(x) =(56)x1(16),x= 1,2,3, . . .(b)x=1(56)x1(16)=1/61(25/36) =611.1.6.5 Here are R functions which compute the pmf and the cdf:p165 <- function(){x = 0:5p165 = choose(20,x)*choose(80,5-x)/choose(100,5)return(p165)}cdf165 <- function(){pm <- p165(); dm = -1:6; dx = c(dm,dm); dy = c(rep(0,8),rep(1,8))plot(dy~dx,pch=" ",xlab="x",ylab=expression(F(x)));segments(-1,0,0,0)ct = 0; cx = -1

Page 8

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 8 preview image

Loading page image...

5for(j in 1:6){ct = ct + pm[j]; cx = cx + 1segments(cx,ct,cx+1,ct)}}1.6.8Dy={1,23,33, . . .}. The pmf ofYisp(y) =(12)y1/3,y∈ Dy.1.7.1 Ifx <10 thenF(x) =P[X(c) =c2x] =P(cx) =x0110dz=x10.Thusf(x) =F(x) ={120x0< x <1000elsewhere.1.7.2C2Cc1P(C2)P(Cc1) = 1(3/8) = 5/8.1.7.4 Among other characteristics,−∞1π(1 +x2)dx= 1πarctanx−∞= 1π[π2(π2)]= 1.1.7.6 Part (b):P(X2<9)=P(3< X <3) =32x+ 219dx=118[x22+ 2x]32=118[212(2)]= 2536.1.7.8 Part (c):f(x) =xex12x2ex= 12xex(2x) = 0;hence,x= 2 is the mode because it maximizesf(x).1.7.9 Part (b):m03x2dx= 12 ;hence,m3= 21andm= (1/2)1/3.

Page 9

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 9 preview image

Loading page image...

6Probability and Distributions1.7.10ξ0.204x3dx= 0.2 :hence,ξ40.2= 0.2 andξ0.2= 0.21/4.1.7.13x= 1 is the mode because for 0< x <becausef(x)=F(x) =exex+xex=xexf(x)=xex+ex= 0,andf(1) = 0.1.7.16 Since Δ>0X > zY=X+ Δ> z.Hence,P(X > z)P(Y > z).1.7.19 Sincef(x) is symmetric about 0,ξ.25<0. So we need to solve,ξ.252(x4)dx=.25.The solution isξ.25=2.1.7.22 For 0< y <27,x=y1/3,dxdy= 13y2/3g(y) ==13y2/3y2/39=127.1.7.24f(x)=1π ,π2< x < π2.x=arctany,dxdy=11 +y2,−∞< y <.g(y)=1π11 +y2,−∞< y <.1.7.25G(y)=P(2 logX4y) =P(Xey/8) =1ey/84x3dx= 1ey/2,0< y <g(y)=G(y) ={ey/20< y <0elsewhere.

Page 10

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 10 preview image

Loading page image...

71.7.26G(y)=P(X2y) =P(yXy)=yy13dx=2y30y <1y113dx=y3+131y <4g(y)=13y0y <116y1y <40elsewhere.1.8.5E(1/X) =100x=511x150.The latter sum is bounded by the two integrals101511xdxand100501xdx.An appropriate approximation might be150101.550.51x dx=150 (log 100.5log 50.5).1.8.7E[X(1X)] =10x(1x)3x2dx.1.8.9 When 1< y <G(y)=P(1/Xy) =P(X1/y) =11/y2x dx= 11y2g(y)=2y3E(Y)=1y2y3dy= 2,which equals10(1/x)2x dx.1.8.11 The expectation ofXdoes not exist becauseE(|X|) = 2π0x1 +x2dx= 1π11u du=,where the change of variableu= 1 +x2was used.1.8.14 Here is the pmf ofG:

Page 11

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 11 preview image

Loading page image...

8Probability and Distributionsp0+ 2p0+ 5p0+ 8(32)(52)(31)(21)(52)(22)(52)It follows thatE(G) =p0+ 4.4; so for a fair game takep0= $4.40. Here isan R function which simulates the game.game1814 <- function(p0,nsims){collG = c()for(i in 1:nsims){p = sample(c(1,1,1,4,4),2)collG = c(collG,-p0 + sum(p))}game1814 = mean(collG)return(game1814)}1.9.2M(t) =x=1(et2)x=et/21(et/2),et/2<1.FindE(X) =M(0) and Var(X) =M′′(0)[M(0)]2.1.9.40var(X) =E(X2)[E(X)]2.1.9.6E[(Xμσ)2]=1σ2σ2= 1.1.9.8K(b)=E[(Xb)2] =E(X2)2bE(X) +b2K(b)=2E(X) + 2b= 0b=E(X).1.9.11 For a continuous type random variable,K(t)=−∞txf(x)dx.K(t)=−∞xtx1f(x)dxK(1) =E(X).K′′(t)=−∞x(x1)tx2f(x)dxK′′(1) =E[X(X1)];and so forth.

Page 12

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 12 preview image

Loading page image...

91.9.123=E(X7)E(X) = 10 =μ.11=E[(X7)2] =E(X2)14E(X) + 49 =E(X2)91E(X2) = 102 and var(X) = 102100 = 2.15=E[(X7)3].Expand (X7)3and continue.1.9.16E(X)=0var(X) =E(X2) = 2p.E(X4)=2pkurtosis = 2p/4p2= 1/2p.1.9.17ψ(t)=M(t)/M(t)ψ(0) =M(0)/M(0) =E(X).ψ′′(t)=M(t)M′′(t)M(t)M(t)[M(t)2]ψ′′(0) =M(0)M′′(0)M(0)M(0)[M(0)2]=M′′(0)[M(0)]2= var(X).1.9.19M(t) = (1t)3= 1 + 3t+ 3·4t22! + 3·4·5t33! +· · ·Considering the coefficient oftr/r!, we haveE(Xr) = 3·4·5· · ·(r+ 2),r= 1,2,3. . . .1.9.21 Integrating the parts withu= 1F(x),dv=dx, we get{[1F(x)]x}b0b0x[f(x)]dx=b0xf(x)dx=E(X).1.9.24E(X)=10x14dx+ 0·14 + 1·12 = 58.E(X2)=10x214dx+ 0·14 + 1·12 =712.var(X)=712(58)2=37192.1.9.25E(X) =−∞x[c1f1(x) +· · ·+ckfk(x)]dx=ki=1ciμi=μ.

Page 13

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 13 preview image

Loading page image...

10Probability and DistributionsBecause−∞(xμ)2fi(x)dx=σ2i+ (μiμ)2, we haveE[(Xμ)2] =ki=1ci[σ2i+ (μiμ)2].1.10.2μ=0xf(x)dx2μ2μf(x)dx= 2μP(X >2μ).Thus12P(X >2μ).1.10.5 If, in Theorem 1.10.2, we takeu(X) = exp{tX}andc= exp{ta}, we haveP(exp{tX} ≥exp{ta}]M(t) exp{−ta}.Ift >0, the events exp{tX} ≥exp{ta}andXaare equivalent. Ift <0,the events exp{tX} ≥exp{ta}andXaare equivalent.1.10.6 We haveP(X1)[1exp{−2t}]/2tfor all 0< t <, andP(X≤ −1)[exp{2t} −1]/2tfor all−∞< t <0. Each of these bounds has the limit 0 ast→ ∞andt→ −∞, respectively.

Page 14

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 14 preview image

Loading page image...

Chapter 2Multivariate Distributions2.1.2P(A5) = 784838 + 28 = 28.2.1.500[2g(x21+x22)x21+x22]dx1dx2=0π/20[2g(ρ)/πρ]ρ dθdρ=0g(ρ)= 1.2.1.6 We can write the double integration asP(a < X < b, c < Y < d) =ba2xex2dx·dc2yey2dy.Sincea, c >0, the one-to-one transformationsz=x2andw=y2, lead to theanswer.2.1.7G(z)=P(X+Yz) =z0zx0exydydx=z0[1e(zx)]exdx= 1ezzez.g(z)=G(z) ={zez0< z <0elsewhere.11

Page 15

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 15 preview image

Loading page image...

12Multivariate Distributions2.1.8G(z)=P(XYz) = 11z1z/xdydx=11z(1zx)dx=zzlogzg(z)=G(z) ={logz0< z <10elsewhere.Why islogz >0?2.1.9f(x, y) =(13x)(13y)(2613xy)(5213)x0, y0, x+y13, xandyintegers0elsewhere.2.1.11P(X1+X21) = 151/20x21[∫1x1x1x2dx2]dx1.2.1.15E[et1X1+t2X2]=i=1j=1et1i+t2j(12)i+j=i=1(et112)ij=1(et112)j=[1121et11] [1121et21],providedti<log 2,i= 1,2.2.2.1p(y1, y2) ={ (23)y2(13)2y2(y1, y2) = (0,0),(1,1),(1,1),(0,2)0elsewhere.2.2.2p(y1, y2) ={y1/36y1=y2,2y2,3y2;y2= 1,2,30elsewhere.y1123469p(y1)1/364/366/364/3612/369/362.2.4 The inverse transformation is given byx1=y1y2andx2=y2with JacobianJ=y2. By noting what the boundaries of the spaceS(X1, X2) map into, itfollows that the spaceT(Y1, Y2) ={(y1, y2) : 0< yi<1, i= 1,2}. The pdf of(Y1, Y2) isfY1,Y2(y1, y2) = 8y1y32.

Page 16

Solution Manual for Introduction to Mathematical Statistics, 8th Edition - Page 16 preview image

Loading page image...

132.2.5 The inverse transformation isx1=y1y2andx2=y2with JacobianJ= 1.The space of (Y1, Y2) isT={(y1, y2) :−∞< yi<, i= 1,2}.Thus thejoint pdf of (Y1, Y2) isfY1,Y2(y1, y2) =fX1,X2(y1y2, y2),which leads to formula (2.2.1).2.3.2(a)c1x20x1/x22dx1=c12 = 1c1= 2 andc2= 5.(b)10x1x22,0< x1< x2<1; zero elsewhere(c)1/21/42x1/(5/8)2dx= 6425(14116)= 1225.(d)1/21/41x110x1x22dx2dx1=1/21/4103x1(1x31)dx1= 135512.2.3.3f2(x2)=x2021x21x32dx1= 7x62,0< x2<1.f1|2(x1|x2)=21x21x32/7x62= 3x21/x32,0< x1< x2.E(X1|x2)=x20x1(3x21/x32)dx1= 34x2.G(y)=P(34X2y)=4y/307x62dx2=(4y3)7,0< y <34g(y)={7(43)7y60< y <340elsewhere.E(Y)=7834 = 2132.Var(Y)=71024.E(X1)=2132.Var(X1)=55315360>71024.2.3.8 The marginal pdf ofXisfX(x) = 2xexeydy= 2e2x,0< x <.Hence, the conditional pdf ofYgivenX=xisfY|X(y|x) = 2exey2e2x=e(yx),0< x < y <,
Preview Mode

This document has 138 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Subject
Statistics

Related Documents

View all