Solution Manual for Linear Algebra, 5th Edition

Solution Manual for Linear Algebra, 5th Edition helps you understand textbook content with detailed solutions and explanations for each problem.

John Wilson
Contributor
4.5
34
5 months ago
Preview (8 of 25 Pages)
100%
Purchase to unlock

Page 1

Solution Manual for Linear Algebra, 5th Edition - Page 1 preview image

Loading page image...

SOLUTIONSMANUALLINEARALGEBRAFIFTHEDITIONStephen H. FriedbergArnold J. InselLawrence E. SpenceIllinois State University

Page 2

Solution Manual for Linear Algebra, 5th Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual for Linear Algebra, 5th Edition - Page 3 preview image

Loading page image...

Contents1Vector Spaces11.1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.3Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.4Linear Combinations and Systems of Linear Equations . . . . . . . . . . . . . . . . .21.5Linear Dependence and Linear Independence. . . . . . . . . . . . . . . . . . . . . .21.6Bases and Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22Linear Transformations and Matrices42.1Linear Transformations, Null Spaces, and Ranges . . . . . . . . . . . . . . . . . . . .42.2The Matrix Representation of a Linear Transformation. . . . . . . . . . . . . . . .42.3Composition of Linear Transformations and Matrix Multiplication. . . . . . . . . .52.4Invertibility and Isomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52.5The Change of Coordinate Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . .62.6Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62.7Homogeneous Linear Differential Equations with Constant Coefficients . . . . . . . .63Elementary Matrix Operations and Systems of Linear Equations83.1Elementary Matrix Operations and Elementary Matrices. . . . . . . . . . . . . . .83.2The Rank of a Matrix and Matrix Inverses. . . . . . . . . . . . . . . . . . . . . . .83.3Systems of Linear Equations—Theoretical Aspects . . . . . . . . . . . . . . . . . . .93.4Systems of Linear Equations—Computational Aspects . . . . . . . . . . . . . . . . .94Determinants114.1Determinants of Order 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114.2Determinants of Ordern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114.3Properties of Determinants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114.4Summary–Important Facts about Determinants. . . . . . . . . . . . . . . . . . . .124.5A Characterization of the Determinant. . . . . . . . . . . . . . . . . . . . . . . . .125Diagonalization135.1Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135.2Diagonalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145.3Matrix Limits and Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . .145.4Invariant Subspaces and the Cayley-Hamilton Theorem. . . . . . . . . . . . . . . .15iii

Page 4

Solution Manual for Linear Algebra, 5th Edition - Page 4 preview image

Loading page image...

Table of Contents6Inner Product Spaces166.1Inner Products and Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166.2The Gram-Schmidt Orthogonalization Process and Orthogonal Complements . . . .166.3The Adjoint of a Linear Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . .176.4Normal and Self-Adjoint Operators. . . . . . . . . . . . . . . . . . . . . . . . . . .176.5Unitary and Orthogonal Operators and Their Matrices. . . . . . . . . . . . . . . .186.6Orthogonal Projections and the Spectral Theorem. . . . . . . . . . . . . . . . . . .186.7The Singular Value Decomposition and the Pseudoinverse . . . . . . . . . . . . . . .196.8Bilinear and Quadratic Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206.10Conditioning and the Rayleigh Quotient . . . . . . . . . . . . . . . . . . . . . . . . .206.11The Geometry of Orthogonal Operators . . . . . . . . . . . . . . . . . . . . . . . . .207Canonical Forms217.1Jordan Canonical Form I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217.2Jordan Canonical Form II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217.3The Minimal Polynomial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227.4Rational Canonical Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22iv

Page 5

Solution Manual for Linear Algebra, 5th Edition - Page 5 preview image

Loading page image...

1Vector Spaces1.1INTRODUCTION2.(b)x= (2,4,0) +t(5,10,0)(d)x= (2,1,5) +t(5,10,2)3.(b)x= (3,6,7) +s(5,6,11) +t(2,3,9)(d)x= (1,1,1) +s(4,4,4) +t(7,3,1)4.(0,0)1.2VECTOR SPACES2.0000000000004.(b)113538(d)30201510540(f )x3+ 7x2+ 4(h)3x56x3+ 12x+ 65.831300300+914300110=174560041016.Yes18.No, (VS 1) fails.19.No, (VS 8) fails.1.3SUBSPACES2.(b)038467(d)1025047836The trace is 12.(f )27501146(h)406013635The trace is 2.8.(b)No(d)Yes(f )No9.W1W3={(0,0,0)},W1W4=W1,W3W4={(a1, a2, a3)R3:a1=11a3anda2=3a3}1

Page 6

Solution Manual for Linear Algebra, 5th Edition - Page 6 preview image

Loading page image...

Chapter 1Vector Spaces1.4LINEAR COMBINATIONS AND SYSTEMS OF LINEAR EQUATIONS2.(b)(2,4,3)(d){x3(8,3,1,0) + (16,9,0,2):x3R}(f )(3,4,2)3.(a)(2,0,3) = 4(1,3,0)3(2,4,1)(b)(1,2,3) = 5(3,2,1) + 8(2,1,1)(d)No(f )(2,2,2) = 4(1,2,1) + 2(3,3,3)4.(a)x33x+ 5 = 3(x3+ 2x2x+ 1)2(x3+ 3x21)(b)No(c)2x311x2+ 3x+ 2 = 4(x32x2+ 3x1)3(2x3+x2+ 3x2)(d)x3+x2+ 2x+ 13 =2(2x33x2+ 4x+ 1) + 5(x3x2+ 2x+ 3)(f )No5.(b)No(d)Yes(f )No(h)No11.The span of{x}is{0}ifx=0and is the line through the origin ofR3in the direction ofxifx6=0.17.ifWis finite1.5LINEAR DEPENDENCE AND LINEAR INDEPENDENCE2.(b)Linearly independent(d)Linearly dependent(f )Linearly independent(h)Linearly independent(j)Linearly dependent10.(1,0,0), (0,1,0), (1,1,0)1.6BASES AND DIMENSION2.(b)Not a basis(d)Basis3.(b)Basis(d)Basis4.No, dim(P3(R)) = 4.5.No, dim(R3) = 3.8.{u1, u3, u5, u7}10.(b)123x(d)2x3x26x+ 1514.{(0,1,0,0,0), (0,0,0,0,1), (1,0,1,0,0), (1,0,0,1,0)}and{(1,0,0,0,1), (0,1,1,1,0)}; dim(W1) = 4 and dim(W2) = 2.16.dim(W) =12n(n+ 1)2

Page 7

Solution Manual for Linear Algebra, 5th Edition - Page 7 preview image

Loading page image...

1.6Bases and Dimension18.Letσjbe the sequence such thatσj(i) ={1i=j0i6=j.Then{σj:j= 1,2, . . .}is a basis for the vector space in Example 5 of Section 1.2.22.W1W223.(a)vW1(b)dim(W2) = dim(W1) + 125.mn27.Ifnis even, then dim(W1) = dim(W2) =n2 ; and ifnis odd,then dim(W1) =n+ 12and dim(W2) =n12.32.(a)TakeW1=R3andW2= span({e1}).(b)TakeW1= span({e1, e2}) andW2= span({e3}).(c)TakeW1= span({e1, e2}) andW2= span({e2, e3}).35.(b)dim(V) = dim(W) + dim(V/W)3

Page 8

Solution Manual for Linear Algebra, 5th Edition - Page 8 preview image

Loading page image...

2Linear Transformationsand Matrices2.1LINEAR TRANSFORMATIONS, NULL SPACES, AND RANGES3.The nullity is 0, and the rank is 2. ThusTis one-to-one, but not onto.6.The nullity isn1, and the rank is 1. ThusTis not one-to-one unlessn= 1, andTis notonto unlessn= 1.11.T(8,11) = (5,3,16)18.T(a, b) = (b,0).N(T) = span{(1,0)}=R(T).19.LetV=W=R, and defineT=IandU= 2I.23.All ofR3or a plane inR3through the origin25.(a)T(a, b) = (0, b)(b)T(a, b) = (0, ba)26.(b)T(a, b, c) = (0,0, c)28.(b)See (a) and (b) of Exercise 25.32.(c)LetV=P(F) andW= span({1}). DefineTfirst on the standard basis ofVbyT(1) =T(x) =0, andT(xk) =xk1fork2. Now extendTto a linear transformation fromVtoV. ThenN(T) = span({1, x}), andR(T) = span({xk:k1}). SoV=R(T)W, butW6=N(T).2.2THE MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION2.(b)(231101)(e)10. . .010. . .0.........10. . .04.1100000201005.(c)(1 0 0 1)(d)(1 2 4)(f )361(g)(a)4
Preview Mode

This document has 25 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all