Solution Manual For Numerical Methods Using Matlab, 4th Edition

Solution Manual For Numerical Methods Using Matlab, 4th Edition provides you with expert textbook solutions that ensure you understand every concept thoroughly.

Nora Campbell
Contributor
4.6
57
5 months ago
Preview (16 of 171 Pages)
100%
Purchase to unlock

Page 1

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 1 preview image

Loading page image...

SolutionManualforNumericalMethods:UsingMATLABJohnH.MathewsandKurtisD.FinkAugust2002

Page 2

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 2 preview image

Loading page image...

DownloadedfromStudyXY.com®+StudyXYSdYe.o>\|iFprE\3SStudyAnythingThisContentHasbeenPostedOnStudyXY.comassupplementarylearningmaterial.StudyXYdoesnotendroseanyuniversity,collegeorpublisher.Allmaterialspostedareundertheliabilityofthecontributors.wv8)www.studyxy.com

Page 3

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 3 preview image

Loading page image...

2

Page 4

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 4 preview image

Loading page image...

Contents1Preliminaries5itdfibReview(oflGaleulnstIHITHTATRETRHTHIEECARTARITITEERSE231avyNeversijiHTAGTTAHREECRCTTIRIHIRRICEdt3iierrorEAmalyeistildFT—HIEIRATGERTHOUECHRHACATIEEATof2TheSolutionofNonlinearEquationsf(z)=0152.91irveracianfarSolvingaiiioe1NARRECAPREACHARCHECITRHG2.2BracketingMethodsforLocatingaRoot..............182.3InitialApproximationandConvergenceCriteria..........202.4Newton-RaphsonandSecantMethods...............212.5Aitken’sProcessandSteffensen’sandMuller'sMethods.....273TheSolutionofLinearSystemsAX=B333.1IntroductiontoVectorsandMatrices................33BallPropertiesofVectors|andMatrices(lIIHHIRMAHITERIITREAAIRITNTZ3.3Upper-TriangularLinearSystems..................373.4GaussianEliminationandPivoting.................38disiiltranenlar|kactorization(i(TIHUIIARIRTAIATIETATIRTTIETETRSG3.6IterativeMethodsforLinearSystems................40SiidiifiTveration|forNonlinearSystems!EIHIHHEEIHWITHEECITIHHTEGS4InterpolationandPolynomialApproximation514.1TaylorSeriesandCalculationofFunctions.............51dillIntraduction|tolInterpolation([LHLHIIHHATHERIRTIRIGIRTRIHIETETNGddlNasrange[ApprosimationiilHARTIRIRCIIHITREARNIERENRTITsoddlNewtonBolynovayals[RHLHEAMHRHRGVETREIIRGIRIGRIITITHARITIGdoiChebysheviFolynomialsi(Gptionat)iILIMHTARIHIITIEGIEGITITITHGGSdibilliFadeAppraxamationsfltiditEITHERGS5CurveFitting73ia:iliffIeast.SquaresilefillyHRHGRIEEATIHEEIERTIRIes2curyetineRTTIHEATERIHETAUHSIEHINTNERATIONHeoeffInterpolationbylSphnekmetionsITHATITHETNCNEATIEREIEITITTNGq3

Page 5

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 5 preview image

Loading page image...

4CONTENTS5.4FourierSeriesandTrigonometricFrotynoratalsutRGHIATERTIEREIEEEerowlifiisezerGurves(HLERIEIHGREEMIEHHITITTTTIIIHIAIIRTRIIETTNS6NumericalDifferentiation93631ADproximatintheDerivativeMTIITITHITIHENRTIRTHTRITITITHITGS6.2NumericalDifferentiationFormulas.................077NumericalIntegration101[{:dllilintroduction|tolQuadrature(itEHTIRATITIRICLETVATABIAICRRARICEOATG17.2CompositeTrapezoidalandSimpson'sRule............1057.3RecursiveRulesandRombergIntegration.............114EeCREbfallGaussTreocndraiTntegration|litfHIHEMEARITGITITTIEITITIEITCHS8NumericalOptimization121a:dliliMminmizationiofafimetionltHTHRHEATARIETAEEEIEIEEACROSS)82Nelder-MeadandPowell'sMethods.................128.3Gradient/andNewtonsMethods([HHTTHHICITARGRIRRTETTIITRog9SolutionofDifferentialEquations1359.1IntroductiontoDifferentialEquations...............1350:2lllEnle=Nethod|iLMMRIMIACIHEARERIIERCRENERTIETITRIEATSS3Hens!Method](LHCHTRCRERRTARENIEAERENEEAtdiTaviorSeriesiMcthodMLILFTMITTTRERIFIIARIRICARRINUARINColliiRumeeKattalncthodstWTLURIHITRRNHITREITIIRAINCOREFAalibliiBredictor.(orrectoniMethodsflITARMRRFRAHITATIRHRCHAIICIIING9urlsystems!ofInferentialiauations|IITHTHTMTENTIRITIRITITORITAATII9:8BoundaryValueProblems|MTHTITATITHITEITIMTIETTRIEITTIHITGGo.9kmiteDifferenceMethod!ftHIHIARITGIATRIREATIIEICINIRIRRNRSG10SolutionofPartialDifferentialEquations15504hByperboliclEquationsHAGCHGTLHTETBETEITITITIRTTT621araboliclEquations(MHHEARTRIRHIREIEITIEEITTIEIRRe03likllipticikquationsi|HsuECEHREARIEITEEETTITRRTIEITINTHL6011EigenvaluesandEigenvectors16311.1HomogeneousSystems:TheEigenvalueProblem.........163C2owerihettiodiREHEATING6si3Jacobisivethad]ititiiuiipmsgurgigRmtiRigiraiiiirmitGeo11.4EigenvaluesforSymmetricMatrices................170

Page 6

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 6 preview image

Loading page image...

Chapter1...Preliminaries1.1ReviewofCalculusL(8)L=limyoofol=2limpoo€n=lipo(2faut)=2=%=0(b)limy,oo2mptonl21liceen=(3ect)=4-1=02.(a)limyoosin(zn)=sin(limy_,oozn)=sin(2)(b)limyooIn(x2)=In(limpoo22)=In(4)3.(a)Sincefiscontinuouson[1,0];solveinatebbsHLkoiRGJH24/7ACT)¢c=1-vZel-1,0](b)Sincefiscontinuouson[6,8];solveViT-55-2=3Z?-5x—11=05£/Faminboll5e=EBs4.(a)f'(z)=223=0,thusthecriticalpointsare¢=+1.Thusmin{f(~1),f(1),£(2)}=min{5,—1,~1}=~1andmaz{f(-1),f(1),/(2)}=maz{5,-1,~1}=5(b)f(z)=~2cos(x)sin(x)cos(z)=cos(z)(2sin(z)+1)=0,thusthecriticalpointsare¢=7,77/6,117/6.Thus5+StudyXY

Page 7

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 7 preview image

Loading page image...

6CHAPTER1.PRELIMINARIESmin{f(0),f(r),f(77/6),f(117/6),f(2m)}=min{1,1,5/4,5/4,1}=1andmaz{f(0),f(r),f(7x/6),f(117/6),f(2r)}=max(1,1,5/4,5/4,1}=5/45.(a)f(z)=42°82=d(x?2)=0,thusc=0,42[2,2](b)f(x)=cos(z)+2co8(2z)=cos(z)+2(2co8*(x)1)=4cos?(z)+cos(z)2=0T=(-1£33)/8¢=cos'((-1£/33)/8),2rcos™I((—1=v/33)/8)6.(a)f(x)=ghzandL200)~1SolvingLo=§yields=1.(b)f(x)=(2?+22)/(x+1)?andLO=LO1Solvingf(z)=(#2+22)/(z+1)>=Lyieldsc=—1+27.ThegivenfunctionsatisfiesthehypothesesoftheGeneralizedRolle’sThe-orem.Sincef(0)=f(1)=f(3)=0,thereexistaa¢(0,3)suchthatJ"(€)=0.Solve6c8=0tofind¢=4/3.8.(a)[Pzetdr=e"eof=e?+1(b)J2,#5dz=$1n(2?+1)[',=0(Theintegrandisanoddfunction)9.(a)4fit*cos(t)dt=22cos(z)Ob)£7edt=oo?(322)=3o2en®10.(8)gpg[26e%dz=22°14=52.Solving62%=52yields¢=LapropeMJ(6)&Jy"?zeos(z)dz=(wsin(e)+cos(x))3=—(1+2).Useacalculatortoapproximatethesolution(s):cos(z)=—(1+=a12.16506,4.43558(0,37/2].na)2p=2(b)or=3(©)Comy=30(4aby)=3limicoo5(22p)=3(d)inw=C=i1)=ShinoYi(tyme)=§StudyXY

Page 8

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 8 preview image

Loading page image...

1.2.BINARYNUMBERSKf12.(a)“gl-D+k@-1P-Je-12+A=—1)+1(b)dz?+3z+1(c)got$2?+113.TheTaylorpolynomialofdegreen=4expandedaboutzo=0forflx)=sin(z)isP(x).14.(a)P(3)=-24EfUGFLEE15.Theaverageareaisgivenby;71;Iride=(23=i16.AnypolynomialP(x)satisfiesthehypothesesofRolle’sTheoremontheinterval[a,b].ThusP'()hasatleastn—1realrootsintheinterval[a,b],P(x)hasatleastn2realrootsintheinterval[a,b],...,andP("=1hasatleast7(n1)=1rcalrootintheinterval[a,b].17.Iff,fandf”aredefinedontheinterval[a,b],thenfiscontinuousontheinterval[a,b]andfisdifferentiableontheinterval(a,b).ByTheorem1.6(MeanValueTheorem)thereexistsnumbers¢;(a,c)and¢;(¢,b)suchthat:1)I(a),10)=fe)(ey)=om)=1)=LTDngpep)=LO-But,sincef(a)=f(b)=0itfollowsthatf/(c;)=f(c)/(ca)andf'(e2)=f(c)/(c—b).Giventhatf’andf”aredefinedintheinterval[a,b],itfollowsthatf”alsosatisfiesthehypothesesofTheorem1.6.Thusthereexistsanumberd(a,b)suchthat:fayl@-re)8-82 jev-ocy—cyca-e(2—e)e=b)(c—a)~~sincef(c)>0.1.2BinaryNumbers1.Answerswilldependonspecificplatform.2.(a)21(b)56(c)254(d)5193.(a)0.75(b)0.65625(c)0.6640625(d)0.855468754.(a)14140625(b)314160156255.(a)v21.4140625=0.00015109...(b)7~3.1416015625=—0.000008908...+StudyXY

Page 9

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 9 preview image

Loading page image...

8CHAPTER1.PRELIMINARIES6.(2)23=10111,2=2011)+1b=1nifAveyIR,UHATR|5=22)+1b=02=201)+0b3=0DUETYsHERSEES(b)87=10101114,87=2(43)+1bo=1silionyapgl21=2010)+1by=110=2(5)4+0by3=05=2AD+1B=12=201)+0bs=0EE"EDME(c)378=101111010,(d)2388=10010101010007.(a)00111ee (b)0.1101uo (c)0.101114(d)010010114,8.(a)0.00011,(b)§=0.102000=0.01402R=%d=0=INT(3)Fi=3=FRAC(3)2F,=ida=1=-INT(3)F=3=FRAC(3)Wr=Fdy=0=INT(3)Fo=§=FRAC(H)23=3di=1=INT(})F=1=FRrAC()(¢)4=0.d1d2d3140=0.001102R=%di=0=INT()Fy=?=FRAC(3)2F=Hdy=0=INT(2)P=dmFRAC(3)2Wy=gdy=1=INT(Z)Fy=g=FRAC(3)2F=3di=0=INT(3)F,=2=FRAC()9.(a)5=0.0001100iw0=0.0001Trap00001100410=0.0000000TT00z4,.,==0.00625I~StudyXY

Page 10

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 10 preview image

Loading page image...

1.2.BINARYNUMBERS9(b)#=0.0010010r0=0.00Tsuo0.010010,=0.00000000100T0-=00022321428...10.InTheorem1.14let¢=§and7=1,thenELUMJAI8764"512EE11.InTheorem1.14let¢=3/16andr=1/16,thenELE)3J1611256iffanaeinifamin=12.1=5.Assume(H*er=.ThenHA[ilarGB-665*5-(#)(%)ph+1MifinotealTherefore,bytheprincipleofmathematicalinduction,2=Vcanberepre-sentedasadecimalnumberthathasNdigits.13.(a)i~0.10114x271=0.1011x27!silo:onsWi2d5l0:011010b<|27z0.1000111px20%~0.1001rwox=0.100140x5=0.101Luox272=0.001011,xpx0.101110xThus+1)+&~0.1100¢w0(b)%20.1100nex27%=0.001101x2713~0101lpex27!=0.101100x2-1pes0.171001x2-7+StudyXY

Page 11

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 11 preview image

Loading page image...

10CHAPTER1.PRELIMINARIESi#&0.1110pex271=0.011100;x=~0.1101peXx272=0.001101,xpi0.101001100x20Thus(&+3)+£~0.101040(c)%~0.1011x272=0.01011x2715=0.1110x27%=0.001110x2-1STITTspec50.10010X271=0.100140x2717=~0.10014Xx272=0.010014,x271FoDITOTImEdomThus(%+2)+4~0.111040x271(d)5~0.1011pex=0.1011000x3~0.1110mex27%=0.0001110x%20.1101x=0.1101004,0x7~0.1011x272=0.001001,xTESSmnrnmeThus(F5+5)+4~0.11114,14.(2)10=101¢hree(b)23=212uree(c)421=1201214pree(d)1784=211002¢nree15.(a)3=0.Lnree(b)3=0Tohree(€)15=0.0022¢hree[IEQE16.(a)(a)10=20se(b)(b)35=12040,(c)(c)721=103440(d)(d)734=1041444,17.(a)3=0T3fi0e(b)£=0Zp.(c)75=0.02510(d)$2=0.1104,

Page 12

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 12 preview image

Loading page image...

1.3.ERRORANALYSIS111.3ErrorAnalysisI(a)©—&=0.00008182,22%=(.0000300998.....,4-significantdigitsb)y—§=350,42=0.0355871.....,2-significant,digitsv(¢)z=2=0.000008,===0.117647,O-significantdigitsalRienegHypoil(r+54shay+stm)=itmmtsem=Goad?”~0.2553074428=p3.(a)p1+p2=1.41440.09125=1.505pip2=(2.1414)(0.09125)=0.1290(b)p1+p2=31.415+0.027182=31.442P1p2=(31.415)(0.27182)=0.853924.(a)OT0711885222010710678110ik0.0000C767108=0.707103Theerrorin-volveslossofsignificance.(b)0.09317218025-0.6931478036J0.00009499909=0.4999938Theerrorin-volveslossofsignificance.5.(a)In(2)lu0)For(c)cos(2x)(d)cos(z/2)6.(a)bdHECKplEEfpJHEELE=20.12-3(7.398)+8.161=20.12-22.194+8.16—1=5.09rileRRRfolRUEdrEBSAME=(~0.2800)(2.72)+3)(2.72)~1=(-0.7616+3)(2.72)1=(2.2384)(2.72)1=6.088-1=5.088R(2.72)=(272-1)EGUh=5.088+StudyXY

Page 13

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 13 preview image

Loading page image...

12CHAPTER1.PRELIMINARIES(b)P(0.975)=(((0.975)°3(0.975)%)+3(0.975))1=(0.92683(0.9506))+2.925)1=(0.92682.852)+2.925)+1=(~1.925+2.925)~1=1-1=0Q(0.975)=((0.9753)(0.975)+3)(0.975)1=((-2.025)(0.975)+3)(0.975)1=(~1.9774+3)(0.975)1=(1.026)(0.975)1=1-1=0R(0.975)=(0.975—1)%=(-0.025)=—0.00001562To(a)F+§+++ohog0.498(0)Ag+ais+a+a++in04998.(a)Thepropagationoferroris€,+¢,+€,.(b)p_itejothaalllatrisallaiiaiedHence,if1<|g]<|p|,thenthereisapossibilityofmagnificationoftheoriginalerror.(e)paro=(Ptep)d+e)F+e)=PUT+preg+acy+Ply+Fepey+Gener+Peger+peer=dF+(Beg+dep+Pier)H(Pepeq+Geper+Pegi)+epcqerDependingontheabsolutevaluesofp,,and#,thereisapossibilityofmagnificationoftheoriginalerrorsep,€4,and€,.9.2toos(h)=2+h+841HORY)(25)cosh)=1+h+5+540h)I~StudyXY

Page 14

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 14 preview image

Loading page image...

1.3.ERRORANALYSIS1310.ef4sin(h)=1+2%+4+O(h?)etsin(h)=h+h+ELOR)AnintermediatecomputationwasBaillAalllad3SALcorceAthtsrg+=gr)=hthHETEr{meme11.Iiilalllsllcon)£5)=14hKBBE4OK)cos(h)sin(h)=h-2-42+O(hT)AnintermediatecomutationwasLallbSl2ril1i2RsTrITEDITA12.x==b/FdaEe=)famiimiBa(VFac)=taeThecaseforx7ishandledinasimilarmanner.13.(a)==—0.001000,x2=—1000(b)1=—0.00100,7=—10000(¢)1=—0.000010,z5=—100000(d)z;=—0.000001,22=~1000000+StudyXY

Page 15

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 15 preview image

Loading page image...

14CHAPTER1.PRELIMINARIES+Studyxy

Page 16

Solution Manual For Numerical Methods Using Matlab, 4th Edition - Page 16 preview image

Loading page image...

Chapter2..TheSolutionofNonlinear.Equationsf(z)=02.1IterationforSolvingr=g(x)1.(a)Clearly,g(z)C[0,1].Since¢'(z)=—/2<0ontheinterval[0,1],thefunctiong(z)isstrictlydecreasingontheinterval[0,1].Ifgisstrictlydecreasingon[0,1],theng(0)=1andg(1)=0implythat9([0,1])=[0,1][0,1].Thus,byTheorem2.2,thefunctiong(x)hasafixedpointontheinterval[0,1].Inaddition:|f'(z)}=|#/2|=z/2<1/2<1ontheinterval[0,1].Thus,byTheorem2.2,thefunctiong(x)hasauniquefixedpointontheinterval[0,1].(b)Clearly,g(x)C[0,1].Sinceg/(x)=—In(2)2™<0ontheinterval[0,1],thefunctiong(x)isstrictlydecreasingontheinterval[0,1].Tfgisstrictlydecreasingon[0,1],then(0)=1andg(1)=1/2implythatg([0,1])=[1/2,1]C[0,1].Thus,byTheorem2.2thefunctiong(x)hasafixedpointontheinterval[0,1].Inaddition:|¢’(2)|=|~1n(2)272|=In(2)272<In(2)<In(e)=1ontheinterval[0,1].Thus,byTheorem2.2,thefunctiong(x)hasanuniquefixedpointontheinterval[0,1].(c)Clearlyg(x)iscontinuouson[0.5,5.2]andg([0.5,5.2])[0.5,5.2].But,9([0.5,2])C[0.5,2].Thus,thehypothesesofthefirstpartofTheorem2.2aresatisfiedandghasafixedpointin[0.5,2].While(1,1)istheuniquefixedpointin[0.5,2],[f/(1)]=11,thusthehypotheseeinpart(4)ofTheorem2.2cannotbesatisfied.15+StudyXY
Preview Mode

This document has 171 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all