Solution Manual for Optimization in Operations Research, 2nd Edition

Solution Manual for Optimization in Operations Research, 2nd Edition is your ultimate textbook solutions guide, providing answers to the most difficult questions.

Emma Adams
Contributor
4.1
41
5 months ago
Preview (16 of 186 Pages)
100%
Purchase to unlock

Page 1

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 1 preview image

Loading page image...

1Chapter 1 Solutions121Supplement to the 2nd edition ofOptimization inOperations Research,by Ronald L. Rardin, PearsonHigher Education, Hoboken NJ,c 2017.2As of June 4, 20151-1.(a)The only unsettled quantity isdecision variables.(b)Given quantities orparameters ared,pandb.(c)Minimize themaximum error, i.e. objective min(d/s)2(d)We must have an integer number of sensorsand not exceed the available budget, i.e.constraintspsb,snonnegative and integer.1-2.(a)Feasible because 3.5(4)14, andoptimal because any largerswould not befeasible.(b)Infeasible and thus not optimalbecause 3.5(6)/14.(c)Feasible because3.5(2)14, but not optimal because feasiblesolutions= 4 yields a better objective value.1-3.(a)The only quantities to bedetermined arex1andx2, the numbers of lotson the 2 lines.(b)Given quantities orparameters aret1,t2,c1,c2,bandT.(c)Minimize total production cost or objectiveminc1x1+c2x2.(d)t1x1+t2x2T(atmostThours of production),x1+x2=b(produceblots),x1, x20and integer(numbers nonnegative integers).1-4.(a)Infeasible and thus not optimalbecause10(0) + 20(3)/40.(b)Feasiblebecause10(2) + 20(1)40 and 2 + 1 = 3.Also optimal because no more or lessexpensivex2can be used ifb= 3 lots are torun.(c)Feasible because10(3) + 20(0)40and 3 + 0 = 3, but not optimal becausex1= 2,x2= 1yields a lower cost.1-5.(a)Exact numerical optimizationbecause it is the maximum feasible choice forthe given set of parameter values.(b)Descriptive modeling because we have merelyevaluated the consequences of a given choiceof decision variables and parameters.(c)Closed-form optimization because an optimalsolution is specified for each choice of decisionvariables.(d)Heuristic optimization becausea good feasible solution is identified for thegiven choice of parameter values, but anon-usual layout might yield superior results.1-6.(a)Provides optimum for all choices ofinput parameters, not just one.(b)Providesa provably best solution, not just a goodfeasible one.(c)Systematically searches for agood feasible solution, rather than justevaluating the consequences of one.1-7.Higher tractability usually means loss ofvalidity, so results from the model might notbe useful in the application.1-8.(a)(3 for the first)·(3 for the second)·. . .·(3 for thenth) =3ncombinations.(b)One run per second is 3,600 per hour, 86,400per day, 31,536,000 per year. The310= 59,049requires 59,049/3,600 = 16.4hours;315= 14,348,907requires 166.1 days;3203.49×109requires 110.6 years; and3302.06×1014requires 6.5 million years.(c)Practical computation would be limited toa few days which could accommodate no morethan 1011 decision variables.1-9.(a)Random variable because short termrainfall is unpredictable.(b)Deterministicquantity because annual rainfall averages arefairly stable.(c)Deterministic quantity be-cause history can be known with certainty.(d)Random variable because future stock marketbehavior is highly uncertain.(e)Deterministicquantity because the seating capacity is fairlyfixed.(f )Random variable because night tonight arrivals are usually variable.(g)Ran-dom variable because breakdowns make the ef-fective production rate uncertain.(h)Deter-ministic quantity because a reliable robot has apredictable rate of production.(i)Determin-istic quantity because short term demand forsuch an expensive product would be fairly wellknown for the next few days.(j)Random vari-able because long term demand for a productis usually uncertain.

Page 2

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 3 preview image

Loading page image...

1Chapter 2 Solutions121Supplement to the 2nd edition ofOptimization inOperations Research,by Ronald L. Rardin, PearsonHigher Education, Hoboken NJ,c 2017.2As of September 24, 20152-1.(a)max200x1+350x2(maxtotalprofit),s.t.5x1+ 5x2300(legs),0.6x1+ 1.5x263(assemblyhours),x150(woodtops),x235(glasstops),x10,x20(b)x1=basic=30,x2=deluxe=30(c)x1x150x2x2350x20x15+5x2x1300.6+1.5x2x1631020304010203040x2x1(*,*) = (30,30)5050max(d)x1x150x2x2350x20x15+5x2x1300.6+1.5x2x16310203040102030405050maxalternative optimaAlloptimalfromx= (30,30)tox= (17.5,35).2-2.(a)max.11x1+.17x2(maxtotalreturn),s.t.x1+x212($12millioninvestment),x110(max$10milliondomestic),x27(max$7millionforeign),x1.5x2(domesticatleasthalfforeign),x2.5x1(foreignatleasthalfdomestic),x10,x20(b)x1=domestic=$5million,x2=foreign=$7million(c)x1x248124812x01x021x102x712x+x1221x.5xx.5x21optimalsolution(x* ,x* )=(5,7)12max(d)x1248124812x01x021x102x712x+x1221x.5xx.5x21maxalternativeoptimaxAlloptimalfromx= (5,7)tox= (8,4).2-3.(a)min3x1+ 5x2(mintotalcost),s.t.x1+x250(atleast50thousandacres),x140(atmost40thousandfromSquawkingEagle),x230(atmost30thousandfromCrookedCreek),x10,x20(b)x1=SquawkingEagle=40thousand,x2=CrookedCreek=10thousand

Page 4

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 4 preview image

Loading page image...

2(c)x1x2255075255075100x+x951212x+x50x302x01x02x401(x* ,x* ) = (40,10)12optimal solutionmin(d)x1x2255075255075100x+x951212x+x50x302minImprovesforeverindirectionΔx1= 1,Δx2=1.(e)x1x2255075255075100x+x951212x+x50x302x01x02x02x401x2=0leavesnofeasible.2-4.(a)maxx1(maxbeefcontent),s.t.x1+x2125(weightatleast125),2.5x1+ 1.8x2350(caloriesatmost350),0.2x1+ 0.1x215(fatatmost15),3.5x1+ 2.5x2360(sodiumatmost360),x10,x20(b)x1=beef=25g,x2=chicken=100g(c)x1x22550751001251501751020304050x+x125122.5x+1.8x35012x01x020.2x+ 0.1x15123.5x+ 2.5x36012maxoptimal solution(x* ,x* ) = (25,100)12(d)x1x225507510012515017510203040502.5x+1.8x35012x01x020.2x+ 0.1x15123.5x+ 2.5x3601212x+x200x1+x2200leavesnofeasible.

Page 5

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 5 preview image

Loading page image...

3(e)x1x225507510012515017510203040502.5x+1.8x350120.2x+ 0.1x15123.5x+ 2.5x36012maxImproveforeverindirectionΔx1= 1,Δx2=2.2-5.(a)max450v+200c(maxtotalprofit),s.t.10v+ 7c70000(wateratmost70000units),v+c10000(totalacreage10000),v7000(atmost70%vegetables),c7000(atmost70%cotton),v0,c0(b)v=7000,c= 0(c)vc200040006000800020004000600080001000010v+ 7c70000v+c10000v0c0v7000c7000optimal solution (v*,c*) = (7000,0)max(d)vc200040006000800020004000600080001000010v+ 7c70000v+c10000maxImprovesforeverindirectionΔv=10,Δc=7.(e)c200040006000800020004000600080001000010v+ 7c70000v+c10000v0c0v7000c7000v+c10000Nosolutionwithv+c=10000.2-6.(a)minx1+x2(minusedstock),s.t.5x1+ 3x215(cutatleast15longrolls),2x1+ 5x210(cutatleast10shortrolls),x14(atmost4timesonpattern1),x24(atmost4timesonpattern2),x1, x20andinteger.(b)Partialcutsmakenophysicalsensebecauseallunusedmaterialisscrap.(c)Eitherx1=x2= 2,orx1= 3,x2= 1

Page 6

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 6 preview image

Loading page image...

4(d)x12x41x015x+ 3x15122x+ 5x1012x422x0alternativeoptimamin1234512345x(e)Both(2,2)and(3,1)arefeasibleandlieonthebestcontouroftheobjective.2-7.(a)min16x1+ 16x2(mintotalwallarea),s.t.x1x2=500(500sqftpool),x12x2(lengthatleasttwicewidth),x215(widthatmost15ft),x10,x20(b)x=length=331feet13,x=width2=15feet(c)x121020304010203040x01x2x21x x=500122x0x15250optimal solution(x* ,x* ) = (33.33,15)12minx(d)x1x21020304010203040x01x2x21x x=500122x0x15250x251x125leavesnofeasible.2-8.(a)maxx2(maxnumberoffloors),s.t.π/4(x1)2x2=150000(150000sqftfloorspace),10x24x1(height at most4timesdiameter),x10,x20(b)x1=diameter= 78.16feet,x2=floors=31.26(c)x12x012x0204060801002040608010x4x12π(x)x=1500001 2214_optimal solution(x* ,x* ) = (78.16,31.26)12maxx(d)x1x2x012x0204060801002040608010x4x12π(x)x=1500001 2214_x501x150leavesnofeasible.2-9.(a)(b)minx2(c)minx1+x2(d)maxx2(e)x21/22-10.

Page 7

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 7 preview image

Loading page image...

5(a)(b)minx1+x2(c)minx1(d)maxx1(e)x1+x212-11.(a)min4i=3i2j=1yi,j(b)max4i=1iyi,3(c)maxpi=1αiyi,4(d)minti=1δiyi(e)4j=1yi,j=si,i= 1, . . . ,3(f )4j=1aj,iyj=ci,i= 1, . . . ,32-12.(a)17i=1xi,j,t200, j= 1, . . . ,5;t=. . . ,7;35constraints(b)5j=17t=1x5,j,t4000;1constraint(c)5j=1xi,j,t100, i= 1, . . . ,17;t= 1, . . . ,7;119constraints2-13.model; param m; param n; paramp; set products := 1 ..m; set lines:= 1 ..n; set weeks := 1 ..p; varx{i in products, j in lines, t inweeks}>= 0;subject to# part (a)linecap{j in lines, t in weeks}:sum{i in products}x[i,j,t]<=200;# part (b)prod5lim:sum{j in lines, t inweeks}x[5,j,t]<=4000;# part (c)minprodn{i in products, t in weeks}:sum{j in lines}x[i,j,t]>=100;#data; param m := 17; param n := 5;param p := 7;2-14.(a)9j=1xi,j,tpi, i= 1, . . . ,47;t= 1, . . . ,10;470constraints(b)0.2547i=19j=1xi,j,t47i=1xi,4,t;t=1, . . . ,5;5constraints(c)xi,1,txi,j,ti= 1,. . . ,47;j=1, . . . ,9;t= 1, . . . ,10;4230constraints2-15.model; param m; param n; paramq; set plots := 1 ..m; set crops :=1 ..n; set years := 1 ..q; param p{i in plots}; var x{i in plots, jcrops, t in years}>= 0; subject to# part (a)acrelims{i in plots, t in years}:sum{j in crops}x[i,j,t]<=p[i];# part (b)crop4min{t in years:t <= 5}:0.25* sum{i in plots, j in crops}x[i,j,t]<= sum{i in plots}x[i,4,t];# part (c)beam1st{i in plots, j in crops, t inyears}:x[i,1,t]>=x[i,j,t];#data; param m := 47; param n := 9;param q := 10;2-16.(a)f(y1, y2, y3)Δ=(y1)2y2/y3,g1(y1, y2, y3)Δ=y1+y2+y3,b1=13,g2(y1, y2, y3)Δ=2y1y2+ 9y3,b2= 0,g3(y1, y2, y3)Δ=y1,b3= 0,g4(y1, y2, y3)Δ=y3,b4= 0(b)f(y1, y2, y3)Δ=13y1+ 22y2+ 10y2y3+ 100,g1(y1, yΔ2, y3)=y1y2+ 9y3,b1=5,g2(y1, y2, y3)Δ=8y24y3,b2= 0,g3(y1, y2, y3)Δ=y1,b3= 0,g4(yΔ1, y2, y3)=y2,b4= 0,g(yΔ51, y2, y3=y3,b5= 0,2-17.(a)LinearbecauseLHSisaweightedsumofthedecisionvariables.(b)LinearbecausebothLHSandRHSareweightedsumsofthedecisionvariables.(c)NonlinearbecauseLHShasreciprocal1/x9.(d)LinearbecauseLHSisaweightedsumofthedecisionvariables.(e)NonlinearbecauseLHShas(xj)2terms.(f )NonlinearbecauseLHShaslog(x1)term,andRHShasaproductof

Page 8

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 8 preview image

Loading page image...

6variables.(g)NonlinearbecauseLHShasmaxoperator.(h)LinearbecauseLHSisaweightedsumofthedecisionvariables.2-18.(a)LPbecausetheobjectiveandallconstraintsarelinear.(b)NLPbecauseofthenonlinearobjectivefunctionwithreciprocalofw2.(c)NLPbecauseofthenonlinearfirstconstraint.(d)LPbecausetheobjectiveandallconstraintsarelinear.2-19.(a)Continuousbecausefractionsmakesense.(b)Discretebecausetheyeitherclosedornot.(c)Discretebecauseaspecificprocessmustbeused.(d)Continuousbecausefractionscanprobablybeignored.2-20.(a)8j=1xj= 3(b)x1+x2+x4+x52(c)x3+x81(d)x4x12-21.(a)max85x1+ 70x2+ 62x3+ 93x4(maxtotalscore),s.t.700x1+400x2+300x3+600x41000($1millionavailable),xj= 0or1, j= 1, . . . ,4(b)Fund2and4,i.e.x1=x3= 0,x2=x4= 12-22.(a)min43y1+175y2+ 60y3+ 35y4(mintotallandcost),s.t.y2+y41(serviceNW),y1+y2+y41(serviceSW),y2+y31(servicecapital),y1+y41(serviceNE),y1+y2+y31(serviceSE),yj= 0or1, j= 1, . . . ,4(b)Build3and4,i.e.y1=y2= 0,y3=y4= 12-23.(a)ILPbecausetheobjectiveandallconstraintsarelinear,butvariablesarediscrete.(b)NLPbecausetheobjectiveisnonlinearandallvariablesarecontinuous.(c)INLPbecausetheobjectiveisnonlinearandvariablesarediscrete.(d)LPbecausetheobjectiveandallconstraintsarelinear,andallvariablesarecontinuous.(e)INLPbecausetheoneconstraintisnonlinear,andz3arediscrete.(f )ILPbecausetheobjectiveandallconstraintsarelinear,butvariablesz1andz3arediscrete.(g)LPbecausetheobjectiveandallconstraintsarelinear,andallvariablesarecontinuous.(h)INLPbecausetheobjectiveisnonlinearandz3isdiscrete.2-24.(a)Model(d)becauseLP’saregenerallymoretractablethanILP’s.(b)Model(d)becauseLP’saregenerallymoretractablethanNLP’s.(c)Model(d)becauseLP’saregenerallymoretractablethanINLP’s.(d)Model(f)becauseILP’saregenerallymoretractablethanINLP’s.(e)Model(g)becauseLP’saregeneratllymoretranctablethanILP’s.2-25.(a)x1x241216481216x81x02x01-x+x412maxalternativeoptimalsolutionsAlternativeoptimafromx1= 8,x2= 0tox1= 8,x2= 12(b)x1x241216481216x81x02x01-x+x412maxoptimal solution (x* ,x* ) = (0,4)12Uniqueoptimumx1= 0,x2= 4(c)Helpingonecanhurttheother.2-26.

Page 9

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 9 preview image

Loading page image...

7(a)Uniqueoptimumx1= 4,x2= 0(b)Uniqueoptimumx1= 0,x2= 4(c)Helpingonecanhurttheother.2-27.(a)min.092x4+.112x5+.141x6+.420x9+.719x12(mintotalcost),s.t.x4+x5+x6+x9+x12=16000(16000mline),.279x4+.160x5+.120x6+.065x9+.039x121600(atmost1600Ohmsresistance),.00175x4+.00130x5+.00161x6+.00095x9+.00048x128.5(atmost8.5dBellattenuation),x4, x5, x6, x9, x120(b)Nonzeros:x5=1000,x12=150002-28.(a)Pumpratesarethedecisionstobemade.(b)uΔj=thecapacityofpumpj,cΔj=thepumpingcostofpumpj(c)min10j=1cjxj(d)x1+x4+x73000(well1),x2+x5+x82500(well2),x3+x6+x9+x107000(well3)(e)xjuj,j= 1, . . . ,10(f )10j=1xj10000(g)xj0,j= 1, . . . ,10(h)AsingleobjectiveLPbecausetheoneobjectiveandallconstraintsarelinear,andallvariablesarecontinuous.(i)x1=x2=x3=1100,x4=x6=1500,x5=1400,x7=400¡x8=x10= 0,x9=19002-29.(a)Thedecisionstobemadearewhichprojectstoundertake.(b)pΔj=theprofitforprojectj,mΔj=theman-daysrequiredonprojectj, andtΔj=theCPUtimerequiredonprojectj.(c)max8j=1pjxj(d)7(8j=1mjxj)/24010(e)8j=1tjxj1000(computertime),8j=1xj3(selectatleast3);x3+x4+x5+x81(includeatleast1ofdirector’sfavorites)(f )xj= 0or1,j= 1, . . . ,8(g)AsingleobjectiveILPbecausetheoneobjectiveandallconstraintsarelinear,butvariablesarediscrete.(h)x1=x3=x6=x7= 1,others=02-30.(a)Wemustdecidewhatquantitiestomovefromsurplussitestofulfilleachneed.(b)sΔi=thesupplyavailableati,rΔj=thequantityneededatj,dΔi,j=thedistancefromitoj.(c)min4i=17j=1di,jxi,j(d)7j=1xi,j=si,i= 1, . . . ,4(e)4i=1xi,j=rj,j= 1, . . . ,7(f )xi,j0,i= 1, . . . ,4,j= 1, . . . ,7(g)AsingleobjectiveLPbecausetheoneobjectiveandallconstraintsarelinear,andallvariablesarecontinuous.(h)Nonzeros:x1,1=81,x1,2=93,x1,3=166,x1,5=90,x1,6=85,x1,7=145,x2,2=301,x3,1=166,x3,4=105,x4,3= 992-31.(a)Thevaluestobechosenarethe

Page 10

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 10 preview image

Loading page image...

8coefficientsintheestimatingrelationship.(b)minnj=1(cjk/(1+ea+bfj))2(mintotalsquarederror)(c)SingleobjectiveNLPbecausetheobjectiveisquadratic,therearenoconstraints,andallvariablesarecontinuous.2-32.(a)The decisionstobe made arewheretoassigneachteacher.(b)min22i=122j=1ci,jxi,j(mintotalcost),max2222i=1j=1ti,jxi,j(maxtotalteacherpreference),max22i=122j=1si,jxi,j(maxtotalsupervisorpreference),max22i=122j=1pi,jxi,j(maxtotalprincipalpreference)(c)22j=1xi,j= 1,i= 1, . . . ,22(eachteacheri)(d)22i=1xi,j= 1,j= 1, . . . ,22(eachschoolj)(e)xi,j= 0or1,i, j= 1, . . . ,22(f )AmultiobjectiveILPbecausethe4objectivesandallconstraintsarelinear,butvariablesarediscrete.2-33.(a)EachtaskmustgotoAssistant0orAssistant1.(b)max100(1x1) +80x1+85(1x2) +70x2+40(1x3) + 90x3+45(1x4) +85x4+70(1x5) + 80x5+82(1x6) + 65x66j=1xj= 3(c)(d)x5=x6(e)xj= 0or1,j= 1, . . . ,6(f )AsingleobjectiveILPbecausetheoneobjectiveandallconstraintsarelinear,butvariablesarediscrete.(g)x2=x3=x4= 1,others=02-34.(a)Batchsizesarethedecisionstobemade.(b)minxj/dj,j= 1, . . . ,4(eachburgerj)(c)4j=1tjdj/xj60(d)0xjuj,j= 1, . . . ,4(e)MultiobjectiveNLPbecausethefirstconstraintisnonlinearandallvariablesarecontinuous.2-35.(a)Theissueishowmanycarstomovefromwheretowhere.(b)Relativelylargevaluescanberoundediffractionalwithoutmuchloss,andcontinuousismoretractable.(c)cΔi,j=thecostofmovingacarfromitoj,pΔj=thenumberofcarspresentlyatj,nΔj=thenumberofcarsrequiredatj(d)min5i=15j=1,j=ici,jxi,j(e)5i=1,i=kxi,k5j=1,j=kxk,j=nkpk,k= 1, . . . ,5(eachregionk)(f )xi,j0,i, j= 1, . . . ,5,i=j(g)AsingleobjectiveLPbecausetheoneobjectiveandallconstraintsarelinear,andallvariablesarecontinuous.(h)Nonzerovalues:x4,2=115,x4,3=165,x5,1=85,x5,3=225////2-36.(a)Wemustdecidehowmuchofwhatfueltoburnateachplant.(b)min4f=123p=1cf,pxf,p(c)min4f=1sf23p=1xf,p(d)4f=1efxf,prp,p= 1, . . . ,23(eachplantp);23constraints(e)xf,p0,f= 1, . . . ,4,p= 1, . . . ,23;92constraints(f )AmultiobjectiveLPbecausethe2objectivesandallconstraintsarelinear,andallvariablesarecontinuous.2-37.(a)Theavailableoptionsaretobuywholelogsorgreenlumber.(b)Relativelylargemagnitudescanberoundedwithoutmuchloss,andcontinuousismoretractable.(c)min70x10+200x15+620x20+ 1.55y1+ 1.30y2(d)100(.09)x10+240(.09)x15+400(.09)x20+.10y1+.08y22350(e)x10+x15+x201500(sawingcapacity),100x10+240x15+400x20+y1+y226500(dryingcapacity)(f )x1050(size10logavailability),x1525(size15logavailability),x2010(size20logavailability),y15000(grade1greenlumberavailability)(g)x10, x15, x20, y1, y20(h)AsingleobjectiveLPbecausetheone

Page 11

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 11 preview image

Loading page image...

9objectiveandallconstraintsarelinear,andallvariablesarecontinuous.(i)x10=50,x15=25,x20= 5,y1=5000,y2=85002-38.(a)Decisionstobemadearewhentoscheduleeachfilm.(b)m1mnminj=1j=j+1aj,jt=1xj,txj,t(c)nt=1xj,t= 1,j= 1, . . . , m(eachfilmj)(d)mj=1xj,t4,t= 1, . . . , n(eachtimet)(e)xj,t= 0or1,j= 1, . . . , m;t= 1, . . . , n(f )AsingleobjectiveINLPbecausetheoneobjectiveisnonlinear,andvariablesarediscrete.(g)model; param m; param n;set films := 1 ..m; set slots := 1..n; var x{j in films, t in slots}binary; param a{j in films, jp infilms}; minimize totconflict:sum{jin films, jp in films:j < m and jp >j}a[j,jp]*sum{t in slots}x[j,t]*x[jp,t]; subject to allin{j infilms}:sum{t in slots}x[j,t] = 1;max4{t in slots}:sum{j in films}x[j,t]<=4;2-39.(a)Weneedtodecidebothwhichofficestoopenandhowtoservicecustomersfromthem.(b)Officesmusteitherbeopenedornot.(c)fΔi=fixedcostofsitei,cΔi,j=unitcostofauditsatjfromi,rΔj=requirednumberofauditsinstatej(d)555mini=1j=1ci,jrjxi,j+i=1fiyi(e)5i=1xi,j= 1,j= 1, . . . ,5(eachlocationj)(f )xi,jyi,i, j= 1, . . . ,5 (eachsitei,locationjcombination)(g)xi,j0,i, j= 1, . . . ,5,yi= 0or1,i= 1, . . . ,5(h)AsingleobjectiveILPbecausetheoneobjectiveandallconstraintsarelinear,buttheyivariablesarediscrete.(i)Nonzeros:x2,2=x2,4=x3,1=x3,3=x5,5= 1,y2=y3=y5= 1(j)model; param m;param n; set sites := 1 ..m; setstates := 1 ..n; var x{i in sites, jin states}>= 0; var y{i in sites}binary; param c{i in sites, j instates}; param f{i in sites}binary; param r{j in states};minimize totcost:sum{i in sites, jin states}c[i,j]*r[j]*x[i,j] + sum{iin sites}f[i]*y[i]; x[j,t]*x[jp,t];subject to doeach{j in states}:sum{iin sites}x[i,j] = 1; switch{i insites, j in states}:x[i,j] <= y[i];data; param m := 5; param n := 5;param f := 1 160 2 49 3 246 4 86 4100; param r := 1 200 2 100 3 300 4100 5 200; param c:1 2 3 4 5 := 10.0 0.4 0.8 0.4 0.8 2 0.7 0.0 0.8 0.40.4 3 0.6 0.4 0.0 0.5 0.4 4 0.6 0.40.9 0.0 0.4 5 0.9 0.4 0.7 0.4 0.0 ;2-40.(a)8maxj=1rjxj,subjectto,8j=1xj4,x1+x2+x32,x4+x5+x6+x7+x81,x2+x3+x4+x82,x1. . . x8= 0or1(b)model; param n ;set games := 1 ..n;#ratings param r{j in games}; #home?param h{j in games}; #state?params{j in games}; #cover?var x{j ingames}binary; maximize totrat:sum{jin games}r[j]*x[j]; subject tocapacity:sum{j in games}x[j] <= 4;home:sum{j in games}h[j]*x[j] >= 2;away:sum{j in games}(1-h[j])* x[j]>= 1; state:sum{j in games}s[j]*x[j]>= 2; data; param n := 8; param r :=13.0 2 3.7 3 2.6 4 1.8 5 1.5 6 1.3 71.6 8 2.0; param h:=1 12 1 3 1 4 0 50 6 0 7 0 8 0; param s:=10 2 1 3 1 41 5 0 6 0 7 0 8 1;(c)ThemodelisanILPbecauseallconstraintsandtheobjectivearelinear,butdecisionvariablesarebinary.2-41.(a)Howtodividefundsistheissue.(b)maxnj=1vjxj(c)minnj=1rjxj(d)nj=1xj= 1(e)xjj,j= 1, . . . , n(eachcategoryj)

Page 12

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 12 preview image

Loading page image...

10(f )xjuj,j= 1, . . . , n(eachcategoryj)(g)AmultiobjectiveLPbecausethe2objectivesandallconstraintsarelinear,andallvariablesarecontinuous.2-42.(a)Theissueiswhichmodulegoestowhichsite.(b)Ifxi,jxi,j= 1theiisatjandiisatj,sowiredj,jwillberequired.Summingoverallpossiblelocationpairscapturesthewirerequirementsforiandi.(c)minm1i=1mnni=i+1adi,ij=1j=1j,jxi,jxi,j(d)nj=1xi,j= 1,i= 1, . . . , m(eachmodulei)(e)mi=1xi,j1,j= 1, . . . , n(eachsitej)(f )xi,j=0or1,i= 1, . . . , m,j= 1, . . . , n(g)SingleobjectiveINLPbecausetheoneobjectiveisnonlinearandvariablesarediscrete.(h)model; param m; param n;set modules := 1 ..m; set sites := 1..n; var x{i in modules, j in sites}binary; param a{i in modules, ip inmodules}; param d{j in sites, jp insites}; minimize totdist:sum{i inmodules, ip in modules:i < m and ip> i}a[i,ip] sum{j in sites, jp insites :j < n and jp > j}d[j,jp]*x[i,j]*x[ip,jp]; subject toalli{i in modules}:sum{j in sites}x[i,j] = 1; allj{j in sites}:sum{i in modules}x[i,j] <= 1;2-43.max 199x1+229x2+188x3+205x4180y1224y2497y3,subjectto,23x3+ 41x42877y1, 14x1+ 29x22333y2,11x3+ 27x43011y3,x1+x2+x3+x4205,y1+y2+y32,x1, . . . , x40,y1, . . . , y3= 0or12-44.max 11x1,1+ 15x1,2+ 19x1,3+ 10x1,4+19x2,1+ 23x2,2+ 44x2,3+ 67x2,4+ 17x3,1+18x3,2+ 24x3,3+ 55x3,4, subjectto, 15x1,1+24x2,1+ 17x3,17600,19x1,2+ 26x2,2+13x3,28200,23x1,3+ 18x2,3+ 16x3,36015,14x1,4+33x2,4+14x3,45000,31x1,1+26x2,1+21x3,16600,25x1,2+ 28x2,2+ 17x3,27900,39x1,3+ 22x2,3+ 20x3,25055,29x1,4+31x2,4+ 18x3,47777,x1,1+x2,1+x3,1200,x1,2+x2,2+x3,2300,x1,3+x2,3+x3,3250,x1,4+x2,4+x3,4500,xj,t0,j=1, . . .3, t= 1, . . .4.

Page 13

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 13 preview image

Loading page image...

1Chapter 3 Solutions121Supplement to the 2nd edition ofOptimization inOperations Research,by Ronald L. Rardin, PearsonHigher Education, Hoboken NJ,c 2017.2As of October 1, 20153-1.(a)x(1)isfeasibleandonlyalocalmaxbecauseallconstraintsaresatisfiedandnonearbypointhasbetterobjectivevalue,buttherearebettersuchas(1,3).x(2)isinfeasibleandthusnosortofoptimumbecauseitviolatesconstraintx20.x(3)isfeasiblebecauseitsatisfiesallconstraints,butnosortofoptimumbecauseitcanbeimprovedintheneighborhood.x(4)isfeasibleandbothalocalandaglobalmaxbecauseitsatisfiesallconstraintsandhasbetterobjectivevaluethananyotherpointinthefeasibleregion.(b)x(1)isinfeasibleandthusnosortofoptimumbecauseitviolatesconstraintx1+x24.x(2)isfeasiblebecauseitsatisfiesallconstraints,butnokindofoptimumbecauseitcanbeimprovedinavarietyofdirections.x(3)isfeasibleandalocalminimumbecauseitcannotbeimprovedintheneighborhood,butnotglobalbecauseotherfeasiblepointssuchasx(4)havebetterobjectivevalues.x(4)isfeasibleandbothalocalandaglobalminimumbecauseitsatisfiesallconstraintsandhasbetterobjectivevaluethananyotherpointinthefeasibleregion.3-2.(a)y(1)= (2,0,5)+2(3,1,0)=(8,2,5),y(2)= (8,2,5)+5(1,2,1)=(3,8,10),(3)y= (3,8,10)+1/2(0,6,0)=(3,11,10)(b)y(1)= (2,0,5)+2(1,3,2)=(4,6,1),y(2)= (4,6,1)+1/2(1,0,2)=(41/2,6,2),y(3)= (41/2,6,2)+12(4,3,2)=(521/2,42,26)3-3.(a)Δw(1)= (4,1,7)(0,1,1)=(4,2,6),Δw(2)= (4,3,19)(4,1,7)=(0,2,8),(3)Δw= (3,3,22)(4,3,19)=(1,0,3)(b)Δw(1)= (4,2,10)(4,0,7)=(0,2,3),Δw(2)= (2,4,5)(4,2,10)=(6,2,5),Δw(3)= (5,5,5)(2,4,5)=(7,1,0)3-4.(a)Nonimprovingbecausetheobjectivevalueworsensintheneighborhoodalongthisdirection.(b)Nonimprovingbecausetheobjectivedecreasesintheneighborhoodalongthisdirection.(c)Improvingbecausetheobjectiveimprovesintheneighborhoodalongthisdirection.(d)Improvingbecausetheobjectiveimprovesintheneighborhoodalongthisdirection.(e)Nonimprovingbecausex(3)isalocalminimum.(f )Improvingbecausetheobjectivevalueimprovesintheneighborhoodalongthisdirection.3-5.(a)Feasiblebecausemovementalongthisdirectionretainsfeasibilityintheneighborhood.(b)Infeasiblebecauseanymovementalongthisdirectionproducesinfeasibility.(c)Feasiblebecausemovementalongthisdirectionretainsfeasibilityintheneighborhood.(d)Feasiblebecausemovementalongthisdirectionretainsequalityoftheonlyactiveconstraint.(e)Feasiblebecauseanymovementalongthisdirectionviolatesnoconstraintsimmediately.(f )Infeasiblebecausemovementalongthisdirectionimmediatelyviolatesx20.3-6.(a)(41λ)2(0 + 3λ) + 3(62λ)25issatisfiedforallpositiveλ;(41λ)0issatisfiedforλ4;(0 + 3λ)0issatisfiedforallpositiveλ;(63λ)0issatisfiedforλ3.Thustheproperstepisλ= min4,3=3{}.Themodelisnotunboundedbecausethisλisfinite.(b)(82λ)2(5 + 1λ) + 3(31λ)25issatisfiedforallpositiveλ;(82λ)0issatisfiedforλ4;(5 + 1λ)0issatisfiedforallpositiveλ;(31λ)0issatisfiedforλ3.Thustheproperstepisλ= min{4,3}=3.Themodelisnotunboundedbecausethisλisfinite.(c)(0 + 1λ)2(0 + 3λ)+ 3(4 + 1λ)25issatisfiedforallpositiveλ;(0+1λ)0issatisfiedforallpositiveλ;(0+3λ)0is

Page 14

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 14 preview image

Loading page image...

2satisfiedforallpositiveλ;(4 + 1λ)0issatisfiedforallpositiveλ. Thusλ= +, andthemodelisunbounded.(d)(20 + 2λ)2(4 + 7λ) + 3(3 + 4λ)25issatisfiedforallpositiveλ;(20 + 2λ)0issatisfiedforallpositiveλ;(4 + 7λ)0issatisfiedforallpositiveλ;(3 + 4λ)0issatisfiedforallpositiveλ.Thusthemodelisunboundedbecausestepsinthisdirectioncanbearbitrarilylargewithoutlosingfeasibility.3-7.(a)f(2,3,4,0,6)=(4,0,2,0,1)andf·Δy=(4,0,2,0,1)·(2,3,4,0,6)=6,soimprovingforamaximize.(b)f(1,0,9,0,0)=(1,0,7,0,2)andf·Δy= (1,0,7,0,2)·(1,20,2,0,4)=7>0,soimprovingforamaximize.(c)f(3,1)=(1 + 2(3),3 + 4)andf·Δy= (5,7)·(7,5)=0,somoreinformationisneeded.(d)f(2,1)=(2(2)+1,2+4)andf·Δy= (5,6)·(1,3)=13<0,sononimprovingforaminimize.(e)f(4,1)=(2(45),2(1+1))andf·Δy= (2,4)·(1,2)=12>0,soimprovingforamaximize.(f )f(1,1)=(2(12)+1,1 +2(13))andf·Δy= (1,3)·(3,1)=0,somoreinformationisneeded.3-8.(a)Δw=f(2,0,5,1)=(3,2,0,1)(b)Δw=f(2,2,1,0)=(0,4,5,1)(c)Δw=f(3,2)=(2(3+2)2,3)=(8,3)(d)Δw=f(11,2)=(4,9+4(2))=(4,17)3-9.(a)2(42)+ (01)2= 5<10so[i]isinactive;2(4)(0)=8so[ii]isactive;(4)>0so[iii]isinactive;(0)=0so[iv]isactive.(b)(62)2+ (41)2=25so[i]isactive;2(6)(4)=8so[ii]isactive;(6)>0so[iii]inactive;(4)>0so[iv]inactive.3-10.(a)Activeconstraintsare3y12y2+ 8y3= 14andy20.Forthesea(1)·Δy= 3,2,8)·(0,4,1)=0anda(4)·Δy= 0,1,0)·(0,4,1)=40as/requiredforfeasibility.(b)Activeconstraintsare3y12y2+ 8y3= 14andy20.Forthese)a(1·Δy= (3,2,8)·(0,4,1)=16,infeasibleforan=constraint.a(4)·Δy=(0,1,0)·(0,4,1)=40infeasibleforaconstraint.(c)Activeconstraintsare3y12y2+ 8y3=,14andy10.Inthefirsta(1)·Δy= (3,2,8)·(2,0,1)=14= 0asrequiredsoinfeasible.(d)Activeconstraintsare3y12y2+ 8y3=14andy10.Forthesea(1)·Δy= (3,2,8)·(2,1,1)=0asrequiredforfeasibilityofan=constraint.a(3)·Δy= (1,0,0)·(2,1,1)=2infeasibleforea0constraint./3-11.(a)Activeconstraintsare2w1+ 3w3=18,1w1+ 1w2+ 2w3=14,andw10.Thusconditionsare2 Δw1+ 3 Δw3= 0,1 Δw1+ 1 Δw2+ 2 Δw3= 0,Δw10(b)Activeconstraintsare2w1+ 3w3=18,and1w1+ 1w2+ 2w3=14.Thusconditionsare2 Δw1+ 3 Δw3= 0,1 Δw1+ 1 Δw2+ 2 Δw3= 0,(c)Activeconstraintsare1w1+ 1w2= 10and2w11w28.Thusconditionsare1 Δw1+ 1 Δw2= 0,2 Δw11 Δw20(d)Onlyactiveconstraintis1w1+ 1w2=10.Thusconditionsare1 Δw1+ 1 Δw2= 0,3-12.(a)1 Δy1+ 5 Δy2<0(b)Directsubstitution(c)Activeconstraintsarey10andy1+y23.(d)Activeconstraintsyieldconditions1 Δy1+ 0 Δy20,1 Δy1+ 1 Δy20.(e)Directsupstitutionshowsdirectionisfeasible.Maximumstepisλ=1whereconstrainty20isencountered.

Page 15

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 15 preview image

Loading page image...

3(f )3-13.(a)3 Δx113 Δx3<0(b)3(1)13(2)=16<0asrequired.(c)Onlyfirstconstraintwith11(3)+4(9)=69,andfourthconstraintx2=0areactiveat(3,0,9).(d)11 Δx1+ 3 Δx2+ 4 Δx3= 0andΔx20.(e)Directsubstitution;Checkinglimitsonλ,(31λ) + (0 + 1λ) + (9 + 2λ)16givesλ2,31λ0givesλ3.Combiningλmin{2,3}= 2.Thenx(2)(32,0 +2,9 + 4)=(1,2,13)3-14.(a)f·Δz(1)= (4,7)·(2,0)=8>0andf·Δz(2)= (4,7)·(2,4)=20>0asrequiredforimprovingdirectionsinamaximize.(b)Withbothdirectionsimprovingatallz,theonlyconsiderationsarewhendirectionsarefeasible.Atz(0)= (0,0),onlyΔz(1)isfeasiblebecauseΔz(2)hasa·Δz(2)= (1,0)·(2,4)=2/0foractivez10.Amaximumfeasiblestepfollows(Δz1)forλ= 2toz(1)= (4,0).Atz(1)= (4,0),furtherpursuitofΔz(1)isinfeasible,butΔz(2)= (2,4)isfeasible.AmaximumfeasiblestepfollowsΔz(2)forλ= 3/4 toz(2)= (5/2,3).Atz(2)= (5/2,3),furtherpursuitofΔz(2)isinfeasible,butΔz(1)= (2,0)isagainfeasible.AmaximumfeasiblestepfollowsΔz(1)forλ= 1/4toz(3)= (3,3).Atz(3),bothdirectionsareinfeasible,andthesearchterminates.(c)z1z21231232z01z02z4122z+z9z= (0,0)(0)z= (4,0)(1)z= (5/2,3)(2)z= (3,3)(3)1z4max3-15.(a)f·Δz(1)= (1,1)(0,5)=5<0·and(f·Δz2)= (1,1)·(2,1)=2<0asrequiredforaminimize.(b)Withbothdirectionsimprovingatallz, theonlyconsiderationsarewhendirectionsarefeasible.Atz(0)= (5,3),onlyΔz(1)isfeasiblebecauseΔz(2)hasa·Δz(2)= (0,1)·(2,1)=1/0foractivez23.AmaximumfeasiblestepfollowsΔz(1)forλ= 3/5toz(1)= (5,0).Atz(1)= (5,0),furtherpursuitofΔz(1)isinfeasible,butΔz(2)= (2,1)isnowfeasible.AmaximumfeasiblestepfollowsΔz(2)forλ= 5/2toz(2)= (0,5/2).Atz(2)= (0,5/2),furtherpursuitofΔz(2)isinfeasible,butΔz(1)= (0,5isagainfeasible.AmaximumfeasiblestepfollowsΔz(1)forλ= 1/10toz(3)= (0,2).Atz(3),bothdirectionsareinfeasible,andthesearchterminates.(c)12312345z21z12z+z42z01z01z52z3z= (5,0)(1)z= (0,5/2)(2)z= (0,2)(3)z= (5,3)(0)min3-16.(a)(3,1,0)+λ(3,3,9),λ[0,1].Settingλ= 1/3inthisexpressionyieldsz(3);noλgivesz(4).(b)(6,4,4)+λ(4,4,3),λ[0,1].Settingλ= 3/4inthisexpressionyieldsz(3); noλgivesz(4).3-17.

Page 16

Solution Manual for Optimization in Operations Research, 2nd Edition - Page 16 preview image

Loading page image...

4(a)x1x224241x02x0681068violationx+x101212(x) + (x)922Fromthegraph,thesetisnotconvexbecausepartofthelinesegmentfromx(1)= (0,3)tox(2)= (3,0)liesoutsidethefeasibleregion.(b)Fromthegraph,thesetisconvexbecausethelinesegmentbetweeneverypairoffeasiblesolutionsliesentirelywithinthefeasibleregion.(c)Convexbecauseallconstraintsarelinear.(d)Convexbecauseallconstraintsarelinear.(e)Notconvexbecausefractionalsolutionsbetweensayx(1)= (0,0,0,4)andx(2)= (0,0,0,5)areinfeasible.(f )Notconvexbecausefractionalsolutionsbetweentheallxj= 1andallxj= 0solutionsareinfeasible.3-18.(a)Onlythefirstandthirdconstraintsareviolatedatw=0.Addingnonnegativeartificialvariablesw4inthefirstandw5inthethird,andminimizingtheirsum,producesPhaseImodel:minw4+w5,s.t.40w1+ 30w2+ 10w3+w4=150,w1w20,4w2+w3+w510,w1, w2, w3, w4, w50.Settingw4=15040(0)30(0)10(0)=150andw5= 104(0)(0)=10(oranyhighervalue)completesastarting(artificially)feasiblesolution.(b)Onlythesecondandthirdconstraintsareviolatedatw=0.Addingnonnegativeartificialvariablew3inthesecond,andw4inthethird,thenminimizingtheirsum,producesPhaseImodel:minw3+w4,s.t.w1+w23,w2+w32,w2+w4w1+ 1,w1, w2, w3, w40.Settingw3= 2andw4= 1(oranyhighervalues),completesastarting(artificially)feasiblesolution.
Preview Mode

This document has 186 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all