Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition

Looking for textbook solutions? Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition has got you covered with detailed answers to all your textbook questions.

Sarah Anderson
Contributor
4.8
31
5 months ago
Preview (16 of 1527 Pages)
100%
Purchase to unlock

Page 1

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 1 preview image

Loading page image...

SOLUTIONSMANUALTIMBRITTJackson State Community CollegePRECALCULUS:CONCEPTSTHROUGHFUNCTIONS,AUNITCIRCLEAPPROACHTOTRIGONOMETRYFOURTH EDITIONMichael SullivanChicago State UniversityMichael Sullivan, IIIJoliet Junior College

Page 2

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 3 preview image

Loading page image...

Table of ContentsChapter F: Foundations: A Prelude to functionsF.1 The Distance and Midpoint Formulas...........................................................................................1F.2 Graphs of Equations in Two Variables; Intercepts; Symmetry ..................................................12F.3 Lines............................................................................................................................................29F.4 Circles .........................................................................................................................................45Chapter Project ...................................................................................................................................56Chapter 1: Functions and Their Graphs1.1 Functions .....................................................................................................................................571.2 The Graph of a Function .............................................................................................................721.3 Properties of Functions................................................................................................................801.4 Library of Functions; Piecewise-defined Functions....................................................................971.5 Graphing Techniques: Transformations....................................................................................1091.6 Mathematical Models: Building Functions ...............................................................................1261.7 Building Mathematical Models Using Variation ......................................................................132Chapter Review ................................................................................................................................136Chapter Test .....................................................................................................................................143Chapter Projects ...............................................................................................................................147Chapter 2: Linear and Quadratic Functions2.1 Properties of Linear Functions and Linear Models ...................................................................1492.2 Building Linear Models from Data ...........................................................................................1612.3 Quadratic Functions and Their Zeros........................................................................................1662.4 Properties of Quadratic Functions.............................................................................................1852.5 Inequalities Involving Quadratic Functions ..............................................................................2072.6 Building Quadratic Models from Verbal Descriptions and from Data .....................................2262.7 Complex Zeros of a Quadratic Function ...................................................................................2342.8 Equations and Inequalities Involving the Absolute Value Function .........................................239Chapter Review ................................................................................................................................246Chapter Test .....................................................................................................................................258Cumulative Review ..........................................................................................................................262Chapter Projects ...............................................................................................................................265Chapter 3: Polynomial and Rational Functions3.1 Polynomial Functions and Models ............................................................................................2693.2 The Real Zeros of a Polynomial Function.................................................................................2933.3 Complex Zeros; Fundamental Theorem of Algebra..................................................................3233.4 Properties of Rational Functions ...............................................................................................3323.5 The Graph of a Rational Function .............................................................................................3413.6 Polynomial and Rational Inequalities........................................................................................398Chapter Review ................................................................................................................................421Chapter Test .....................................................................................................................................437Cumulative Review ..........................................................................................................................441Chapter Projects ...............................................................................................................................446

Page 4

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 4 preview image

Loading page image...

Chapter 4: Exponential and Logarithmic Functions4.1 Composite Functions.................................................................................................................4484.2 One-to-One Functions; Inverse Functions ................................................................................4654.3 Exponential Functions...............................................................................................................4874.4 Logarithmic Functions ..............................................................................................................5074.5 Properties of Logarithms ...........................................................................................................5284.6 Logarithmic and Exponential Equations ...................................................................................5364.7 Financial Models .......................................................................................................................5564.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growthand Decay Models .............................................................................................................5644.9 Building Exponential, Logarithmic, and Logistic Models from Data.......................................573Chapter Review ................................................................................................................................579Chapter Test .....................................................................................................................................591Cumulative Review ..........................................................................................................................595Chapter Projects ...............................................................................................................................599Chapter 5: Trigonometric Functions5.1 Angles and Their Measure ........................................................................................................6025.2 Trigonometric Functions: Unit Circle Approach ......................................................................6105.3 Properties of the Trigonometric Functions................................................................................6285.4 Graphs of the Sine and Cosine Functions .................................................................................6415.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions........................................6615.6 Phase Shift; Sinusoidal Curve Fitting .......................................................................................670Chapter Review ................................................................................................................................684Chapter Test .....................................................................................................................................692Cumulative Review ..........................................................................................................................696Chapter Projects ...............................................................................................................................700Chapter 6: Analytic Trigonometry6.1 The Inverse Sine, Cosine, and Tangent Functions ....................................................................7046.2 The Inverse Trigonometric Functions (Continued)...................................................................7166.3 Trigonometric Equations...........................................................................................................7286.4 Trigonometric Identities ............................................................................................................7476.5 Sum and Difference Formulas...................................................................................................7606.6 Double-angle and Half-angle Formulas ....................................................................................7846.7 Product-to-Sum and Sum-to-Product Formulas ........................................................................812Chapter Review ................................................................................................................................821Chapter Test .....................................................................................................................................836Cumulative Review ..........................................................................................................................841Chapter Projects ...............................................................................................................................846

Page 5

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 5 preview image

Loading page image...

Table of ContentsChapter 7: Applications of Trigonometric Functions7.1 Right Triangle Trigonometry; Applications..............................................................................8507.2 The Law of Sines.......................................................................................................................8627.3 The Law of Cosines...................................................................................................................8767.4 Area of a Triangle......................................................................................................................8897.5 Simple Harmonic Motion; Damped Motion; Combining Waves .............................................898Chapter Review ................................................................................................................................907Chapter Test .....................................................................................................................................914Cumulative Review ..........................................................................................................................917Chapter Projects ...............................................................................................................................924Chapter 8: Polar Coordinates; Vectors8.1 Polar Coordinates ......................................................................................................................9288.2 Polar Equations and Graphs ......................................................................................................9358.3 The Complex Plane; DeMoivre’s Theorem ..............................................................................9648.4 Vectors.......................................................................................................................................9758.5 The Dot Product ........................................................................................................................9878.6 Vectors in Space........................................................................................................................9938.7 The Cross Product .....................................................................................................................999Chapter Review ..............................................................................................................................1009Chapter Test ...................................................................................................................................1018Cumulative Review ........................................................................................................................1022Chapter Projects .............................................................................................................................1024Chapter 9: Analytic Geometry9.2 The Parabola............................................................................................................................10289.3 The Ellipse...............................................................................................................................10439.4 The Hyperbola.........................................................................................................................10599.5 Rotation of Axes; General Form of a Conic............................................................................10789.6 Polar Equations of Conics .......................................................................................................10909.7 Plane Curves and Parametric Equations..................................................................................1097Chapter Review ..............................................................................................................................1110Chapter Test ...................................................................................................................................1119Cumulative Review ........................................................................................................................1124Chapter Projects .............................................................................................................................1126Chapter 10: Systems of Equations and Inequalities10.1 Systems of Linear Equations: Substitution and Elimination.................................................113010.2 Systems of Linear Equations: Matrices.................................................................................115110.3 Systems of Linear Equations: Determinants .........................................................................117510.4 Matrix Algebra ......................................................................................................................118910.5 Partial Fraction Decomposition.............................................................................................120710.6 Systems of Nonlinear Equations ...........................................................................................122410.7 Systems of Inequalities..........................................................................................................125210.8 Linear Programming..............................................................................................................1266Chapter Review ..............................................................................................................................1278Chapter Test ...................................................................................................................................1294Cumulative Review ........................................................................................................................1302Chapter Projects .............................................................................................................................1306

Page 6

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 6 preview image

Loading page image...

Chapter 11: Sequence; Induction; the Binomial Theorem11.1 Sequences ..............................................................................................................................130811.2 Arithmetic Sequences............................................................................................................131711.3 Geometric Sequences; Geometric Series ..............................................................................132411.4 Mathematical Induction.........................................................................................................133511.5 The Binomial Theorem .........................................................................................................1343Chapter Review ..............................................................................................................................1348Chapter Test ...................................................................................................................................1353Cumulative Review ........................................................................................................................1356Chapter Projects .............................................................................................................................1359Chapter 12: Counting and Probability12.1 Counting ................................................................................................................................136112.2 Permutations and Combinations............................................................................................136312.3 Probability .............................................................................................................................1367Chapter Review ..............................................................................................................................1373Chapter Test ...................................................................................................................................1374Cumulative Review ........................................................................................................................1376Chapter Projects .............................................................................................................................1379Chapter 13: A Preview of Calculus: The Limit, Derivative, and Integral of a Function13.1 Finding Limits Using Tables and Graphs..............................................................................138213.2 Algebra Techniques for Finding Limits ................................................................................138813.3 One-sided Limits; Continuous Functions..............................................................................139313.4 The Tangent Problem; The Derivative ..................................................................................140013.5 The Area Problem; The Integral............................................................................................1410Chapter Review ..............................................................................................................................1424Chapter Test ...................................................................................................................................1431Chapter Projects .............................................................................................................................1434Appendix A: ReviewA.1 Algebra Essentials ..................................................................................................................1440A.2 Geometry Essentials ...............................................................................................................1445A.3 Polynomials ............................................................................................................................1450A.4 Factoring Polynomials............................................................................................................1457A.5 Synthetic Division ..................................................................................................................1462A.6 Rational Expressions ..............................................................................................................1464A.7nth Roots; Rational Exponents ...............................................................................................1473A.8 Solving Equations...................................................................................................................1481A.9 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications .......1491A.10 Interval Notation; Solving Inequalities ................................................................................1499A.11 Complex Numbers................................................................................................................1509Appendix B: Graphing UtilitiesB.1 The Viewing Rectangle ..........................................................................................................1515B.2 Using a Graphing Utility to Graph Equations ........................................................................1516B.3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry ..............................1520B.5 Square Screens........................................................................................................................1522

Page 7

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 7 preview image

Loading page image...

1Chapter FFoundations: A Prelude to FunctionsSection F.11.02.5388 3.22342554.22211601213600372161Since the sum of the squares of two of the sidesof the triangle equals the square of the third side,the triangle is a right triangle.5.12bh6.True7.x-coordinate, or abscissa; y-coordinate, orordinate.8.quadrants9.midpoint10.False. Distance is always a positive number.11.False. The point would lie in quadrant II.12.True13.b14.a15.(a)Quadrant II(b)Positive x-axis(c)Quadrant III(d)Quadrant I(e)Negative y-axis(f)Quadrant IV16.(a)Quadrant I(b)Quadrant III(c)Quadrant II(d)Quadrant I(e)Positive y-axis(f)Negative x-axis17.The points will be on a vertical line that is twounits to the right of the y-axis.18.The points will be on a horizontal line that isthree units above the x-axis.

Page 8

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 8 preview image

Loading page image...

Chapter FFoundations: A Prelude to Functions219.2212(,)(20)(10)415d P P20.2212(,)(20)(10)415d P P21.2212(,)(21)(21)9110d P P22.2212(,)2( 1)(21)9110d P P 23. 222212(,)(53)4428464682 17d P P 24. 222212(,)214034916255d P P 25.221222(,)6( 3)(02)9(2)81485d P P  26.222212(,)422( 3)2542529d P P 27.221222(,)( 24)5( 2)( 6)( 3)3694535d P P   28.221222(,)6(4)2( 3)1051002512555d P P  29.221222(,)2.3(0.2(1.10.3)(2.5)(0.8)6.250.646.892.62d P P 30.221222(,)0.31.2(1.12.3)( 1.5)( 1.2)2.251.443.691.92d P P 31.222212(,)(0)(0)d P Pabab32.2222122(,)(0)(0)22d P Paaaaaa33.(2,5),(1,3),( 1, 0)ABC  222222222222(,)1(2)(35)3(2)9413(,)11(03)(2)(3)4913(,)1(2)(05)1(5)12526d A Bd B Cd A C       Verifying that ∆ ABC is a right triangle by thePythagorean Theorem:222222(,)(,)(,)1313261313262626d A Bd B Cd A CThe area of a triangle is12Abh. In thisproblem,

Page 9

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 9 preview image

Loading page image...

Section F.1:The Distance and Midpoint Formulas3 1(,)(,)2111313132213 square units2Ad A Bd B C34.(2, 5),(12, 3),(10,11)ABC 222222222222(,)12(2)(35)14(2)1964200102(,)1012( 113)(2)( 14)4196200102(,)10(2)( 115)12(16)14425640020d A Bd B Cd A C       Verifying that ∆ ABC is a right triangle by thePythagorean Theorem:222222(,)(,)(,)10210220200200400400400d A Bd B Cd A CThe area of a triangle is12Abh. In thisproblem, 1(,)(,)21 102 10221 100 22100 square unitsAd A Bd B C35.(5,3),(6, 0),(5,5)ABC 222222222222(,)6(5)(03)11(3)1219130(,)56(50)(1)512526(,)5(5)(53)1021004104226d A Bd B Cd A C   Verifying that ∆ ABC is a right triangle by thePythagorean Theorem:222222(,)(,)(,)1042613010426130130130d A Cd B Cd A BThe area of a triangle is12Abh. In this

Page 10

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 10 preview image

Loading page image...

Chapter FFoundations: A Prelude to Functions4problem, 1(,)(,)211042621 2262621 2 26226 square unitsAd A Cd B C36.(6, 3),(3,5),( 1, 5)ABC  222222222222(,)3(6)( 53)9(8)8164145(,)13(5( 5))(4)1016100116229(,)1(6)(53)5225429d A Bd B Cd A C       Verifying that ∆ ABC is a right triangle by thePythagorean Theorem:222222(,)(,)(,)2911614529116145145145d A Cd B Cd A BThe area of a triangle is12Abh. In thisproblem, 1(,)(,)21291162129 22921 2 29229 square unitsAd A Cd B C37.(4,3),(0,3),(4, 2)ABC222222222222(,)(04)3( 3)(4)0160164(,)402( 3)45162541(,)(44)2( 3)05025255d A Bd B Cd A C    Verifying that ∆ ABC is a right triangle by thePythagorean Theorem:

Page 11

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 11 preview image

Loading page image...

Section F.1:The Distance and Midpoint Formulas5222222(,)(,)(,)45411625414141d A Bd A Cd B CThe area of a triangle is12Abh. In thisproblem, 1(,)(,)21 4 5210 square unitsAd A Bd A C38.(4,3),(4, 1),(2, 1)ABC222222222222(,)(44)1( 3)04016164(,)2411(2)04042(,)(24)1( 3)(2)44162025d A Bd B Cd A C  Verifying that ∆ ABC is a right triangle by thePythagorean Theorem:222222(,)(,)(,)4225164202020d A Bd B Cd A CThe area of a triangle is12Abh. In thisproblem, 1(,)(,)21 4 224 square unitsAd A Bd B C39.The coordinates of the midpoint are:1212( ,),224435 ,2280,22(4, 0)xxyyx y 40.The coordinates of the midpoint are:1212( ,),222204,2204,220, 2xxyyx y  41.The coordinates of the midpoint are:1212( ,),223620,2232,223 ,12xxyyx y   

Page 12

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 12 preview image

Loading page image...

Chapter FFoundations: A Prelude to Functions642.The coordinates of the midpoint are:1212( ,),222432,2261,2213,2xxyyx y  43.The coordinates of the midpoint are:1212( ,),224( 2)2( 5),2227,2271, 2xxyyx y    44.The coordinates of the midpoint are:1212( ,),224232,2221,2211,2xxyyx y45.The coordinates of the midpoint are:1212( ,),220.22.3 0.31.1,222.1 1.4,22(1.05, 0.7)xxyyx y 46.The coordinates of the midpoint are:1212( ,),221.2(0.3)2.31.1,220.93.4,220.45, 1.7xxyyx y  47.The coordinates of the midpoint are:1212( ,),2200,22,22xxyyx yabab  48.The coordinates of the midpoint are:1212( ,),2200,22,22xxyyx yaaaa  49.Consider points of the form2,ythat are adistance of 5 units from the point2,1.222121222222221411612217dxxyyyyyyyy    2222225217521725217028042yyyyyyyyyy404yy or202yy

Page 13

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 13 preview image

Loading page image...

Section F.1:The Distance and Midpoint Formulas7Thus, the points2,4and2, 2are adistance of 5 units from the point2,1.50.Consider points of the form,3xthat are adistance of 13 units from the point1, 2. 2221212222221232152125226dxxyyxxxxxxx 22222213226132261692260214301311xxxxxxxxxx13013xxor11011xx Thus, the points13,3and11,3are adistance of 13 units from the point1, 2.51.Points on the x-axis have a y-coordinate of 0.Thus, we consider points of the form, 0xthatare a distance of 5 units from the point4,3.22212122222243016831689825dxxyyxxxxxxx  22222258255825258250808xxxxxxxxx x0xor808xxThus, the points0, 0and8, 0are on the x-axis and a distance of 5 units from the point4,3.52.Points on the y-axis have an x-coordinate of 0.Thus, we consider points of the form0,ythatare a distance of 5 units from the point4, 4.222121222222404416816168832dxxyyyyyyyyy2222225832583225832087071yyyyyyyyyy707yyor101yyThus, the points0, 7and0,1are on the y-axis and a distance of 5 units from the point4, 4.53.The midpoint of AB is:0600,223, 0D The midpoint of AC is:0404,222, 2E The midpoint of BC is:6404,225, 2F 2222(,)04(34)(4)(1)16117d C D 

Page 14

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 14 preview image

Loading page image...

Chapter FFoundations: A Prelude to Functions82222(,)26(20)(4)21642025d B E2222(,)(20)(50)2542529d A F54.Let12(0, 0),(0, 4),( ,)PPPx y221222122222222222,(00)(40)164,(0)(0)416,(0)(4)(4)4(4)16dPPdPPxyxyxydPPxyxyxyTherefore,222248168162yyyyyyywhich gives2222161223xxx Two triangles are possible. The third vertex is23, 2or23, 2.55.Let10, 0P,20,Ps,3, 0Ps, and4,Ps s.(0,s)(s,0)(0,0)(s,s)XYThe points1Pand4Pare endpoints of onediagonal and the points2Pand3Pare theendpoints of the other diagonal.1,400,,2222ssssM2,300,,2222ssssMThe midpoints of the diagonals are the same.Therefore, the diagonals of a square intersect attheir midpoints.56.Let10, 0P,2, 0Pa, and33,22aaP . To show that these verticesform an equilateral triangle, we need to showthat the distance between any pair of points is thesame constant value.22122121222,000dP Pxxyyaaa22232121222222,302234444dPPxxyyaaaaaaaa22132121222222,3002234444dP PxxyyaaaaaaaSince all three distances have the same constantvalue, the triangle is an equilateral triangle.Now find the midpoints:

Page 15

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 15 preview image

Loading page image...

Section F.1:The Distance and Midpoint Formulas91 22 31 3000,, 02223330,22,4422300322,,2244P PP PP PaaDMaaaaaEMaaaaFM  22222233,0424344316162aaadD Eaaaaa 2222223,0424344316162aaadD Faaaaa 22222333,44440242aaaadE FaaaSince the sides are the same length, the triangleis equilateral.57.221222(,)(42)(11)(6)0366d P P222322(,)4(4)( 31)0(4)164d PP   221322(,)(42)( 31)(6)(4)3616522 13d P P  Since222122313(,)(,)(,)d P Pd PPd P P,the triangle is a right triangle.58.221222(,)6( 1)(24)7(2)49453d P P  222322(,)46( 52)(2)(7)44953d PP  221322(,)4( 1)( 54)5(9)2581106d P P   Since222122313(,)(,)(,)d P Pd PPd P P,the triangle is a right triangle.Since1223,,dPPdPP, the triangle isisosceles.Therefore, the triangle is an isosceles righttriangle.

Page 16

Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition - Page 16 preview image

Loading page image...

Chapter FFoundations: A Prelude to Functions1059.221222(,)0(2)7( 1)28464682 17d P P  222322(,)30(27)3(5)92534d PP 221322(,)3( 2)2( 1)5325934d P P  Since2313(,)(,)d PPd P P, the triangle isisosceles.Since222132312(,)(,)(,)d P Pd PPd P P,the triangle is also a right triangle.Therefore, the triangle is an isosceles righttriangle.60.221222(,)4702( 11)(2)121412555d P P 222322(,)4(4)(60)86643610010d PP 221322(,)4762( 3)4916255d P PSince222132312(,)(,)(,)d P Pd PPd P P,the triangle is a right triangle.61.Using the Pythagorean Theorem:222229090810081001620016200902127.28 feetdddd90909090d62.Using the Pythagorean Theorem:222226060360036007200720060284.85 feetdddd60606060d63.a.First: (90, 0), Second: (90, 90)Third: (0, 90)(0,0)(0,90)(90,0)(90,90)XYb.Using the distance formula:2222(31090)(1590)220( 75)5402552161232.43 feetd 
Preview Mode

This document has 1527 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all