Solution Manual For Thomas' Calculus, 12th Edition

Solution Manual For Thomas' Calculus, 12th Edition offers the best solutions to textbook problems, helping you prepare for exams and assignments.

Madison Taylor
Contributor
4.1
35
5 months ago
Preview (16 of 1176 Pages)
100%
Purchase to unlock

Loading document content...

Preview Mode

Sign in to access the full document!

Solution Manual For Thomas' Calculus, 12th Edition

Page 1

CHAPTER 1 FUNCTIONS 1.1 FUNCTIONS AND THEIR GRAPHS 1. domain ( ); range [1 ) 2. domain [0 ); range ( 1] œ _ß _ œ ß _ œ ß _ œ _ß 3. domain 2 ); y in range and y 5x 10 y can be any positive real number range ). œ Ò ß _ œ  ! Ê Ê œ Ò!ß _ È 4. domain ( 0 3, ); y in range and y x 3x y can be any positive real number range ). œ _ß Ó  Ò _ œ  ! Ê Ê œ Ò!ß _ È 2 5. domain ( 3 3, ); y in range and y , now if t 3 3 t , or if t 3 œ _ß Ñ  Ð _ œ  Ê   ! Ê  !  4 4 3 t 3 t   3 t y can be any nonzero real number range 0 ). Ê   ! Ê  ! Ê Ê œ Ð_ß Ñ  Ð!ß _ 4 3 t  6. domain ( 4, 4 4, ); y in range and y , now if t t 16 , or if œ _ß %Ñ  Ð Ñ  Ð _ œ  % Ê   ! Ê  ! 2 2 t 16 t 16 2 2 2   t 4 16 t 16 , or if t t 16 y can be any %   Ê  Ÿ   ! Ê  Ÿ  !  % Ê   ! Ê  ! Ê 2 2 2 2 t 16 t 16 # "'   2 2 nonzero real number range ). Ê œ Ð_ß  Ó  Ð!ß _ 1 8 7. (a) Not the graph of a function of x since it fails the vertical line test. (b) Is the graph of a function of x since any vertical line intersects the graph at most once. 8. (a) Not the graph of a function of x since it fails the vertical line test. (b) Not the graph of a function of x since it fails the vertical line test. 9. base x; (height) x height x; area is a(x) (base)(height) (x) x x ; œ  œ Ê œ œ œ œ # # # # # # # # # " " ˆ ‰ Š x 3 3 3 4 È È È perimeter is p(x) x x x 3x. œ   œ 10. s side length s s d s ; and area is a s a d œ Ê  œ Ê œ œ Ê œ # # # # # " # d 2 È 11. Let D diagonal length of a face of the cube and the length of an edge. Then D d and œ j œ j  œ # # # D 2 3 d . The surface area is 6 2d and the volume is . # # # # # # $ $Î# œ j Ê j œ Ê j œ j œ œ j œ œ d 6d d d 3 3 3 3 3 È È # # $ Š 12. The coordinates of P are x x so the slope of the line joining P to the origin is m (x 0). Thus, ˆ È ß œ œ  È È x x x " x, x , . ˆ ˆ È œ " " m m # 13. 2x 4y 5 y x ; L x 0 y 0 x x x x x  œ Ê œ   œ Ð  Ñ  Ð  Ñ œ  Ð  Ñ œ    " " " # # 5 5 5 25 4 4 4 4 16 2 2 2 2 2 2 È É É x x œ   œ œ É É 5 5 25 20x 20x 25 4 4 16 16 4 2 20x 20x 25 2 2     È 14. y x 3 y 3 x; L x 4 y 0 y 3 4 y y 1 y œ  Ê  œ œ Ð  Ñ  Ð  Ñ œ Ð   Ñ  œ Ð  Ñ  È È È È 2 2 2 2 2 2 2 2 2 y 2y 1 y y y 1 œ    œ   È È 4 2 2 4 2

Page 2

Page 3

2 Chapter 1 Functions 15. The domain is . 16. The domain is . a b a b _ß _ _ß _ 17. The domain is . 18. The domain is . a b _ß _ Ð_ß !Ó 19. The domain is . 20. The domain is . a b a b a b a b _ß !  !ß _ _ß !  !ß _ 21. The domain is 5 5 3 3, 5 5, 22. The range is 2, 3 . a b a b _ß   Ð ß  Ó  Ò Ñ  _ Ò Ñ 23. Neither graph passes the vertical line test (a) (b)

Page 4

Section 1.1 Functions and Their Graphs 3 24. Neither graph passes the vertical line test (a) (b) x y 1 x y y 1 x or or x y y x k k Ú Þ Ú Þ Û ß Û ß Ü à Ü à  œ Í Í  œ " œ   œ " œ "  25. x 0 1 2 26. x 0 1 2 y 0 1 0 y 1 0 0 27. F x 28. G x 4 x , x 1 x 2x, x 1 , x 0 x, 0 x a b a b œ œ œ œ  Ÿ    Ÿ 2 2 x " 29. (a) Line through and : y x; Line through and : y x 2 a b a b a b a b !ß ! "ß " œ "ß " #ß ! œ   f(x) x, 0 x 1 x 2, 1 x 2 œ Ÿ Ÿ    Ÿ œ (b) f(x) 2, x x 2 x x œ ! Ÿ  " " Ÿ  # ß # Ÿ  $ $ Ÿ Ÿ % Ú Ý Ý Û Ý Ý Ü 30. (a) Line through 2 and : y x 2 a b a b #ß ! œ   Line through 2 and : m , so y x 2 x a b a b a b ß " &ß ! œ œ œ  œ    " œ   !  " " " " " & &  # $ $ $ $ $ f(x) x , 0 x x , x œ   #  Ÿ #   #  Ÿ & œ " & $ $ (b) Line through and : m , so y x a b a b "ß ! !ß $ œ œ $ œ $  $ $  ! !  Ð"Ñ Line through and : m , so y x a b a b !ß $ #ß " œ œ œ # œ #  $ "  $ % #  ! # f(x) x , x x , x œ $  $ "  Ÿ ! #  $ !  Ÿ # œ

Page 5

4 Chapter 1 Functions 31. (a) Line through and : y x a b a b "ß " !ß ! œ  Line through and : y a b a b !ß " "ß " œ " Line through and : m , so y x x a b a b a b "ß " $ß ! œ œ œ  œ   "  " œ   !" " " " " $ $" # # # # # f(x) x x x x x œ  " Ÿ  ! " !  Ÿ "   "   $ Ú Û Ü " $ # # (b) Line through 2 1 and 0 0 : y x a b a b  ß  ß œ 1 2 Line through 0 2 and 1 0 : y 2x 2 a b a b ß ß œ   Line through 1 1 and 3 1 : y 1 a b a b ß  ß  œ  f x x 2 x 0 2x 2 0 x 1 1 1 x 3 a b Ú Û Ü œ  Ÿ Ÿ    Ÿ   Ÿ 1 2 32. (a) Line through and T : m , so y x 0 x ˆ ˆ a b T T T T T T T #  Î# # "! # # # ß ! ß " œ œ œ   œ  " a b f x , 0 x x , x T a b  œ ! Ÿ Ÿ  "  Ÿ T T T # # # (b) f x A, x A x T A T x A x T a b Ú Ý Ý Ý Û Ý Ý Ý Ü œ ! Ÿ   ß Ÿ  ß Ÿ   ß Ÿ Ÿ # T T T T # # $ # $ # 33. (a) x 0 for x [0 1) (b) x 0 for x ( 1 0] Ú Û œ ß Ü Ý œ  ß 34. x x only when x is an integer. Ú Û œ Ü Ý 35. For any real number x, n x n , where n is an integer. Now: n x n n x n. By Ÿ Ÿ  " Ÿ Ÿ  " Ê Ð  "Ñ Ÿ  Ÿ  definition: x n and x n x n. So x x for all x . Ü Ý œ  Ú Û œ Ê Ú Û œ  Ü Ý œ Ú Û − d 36. To find f(x) you delete the decimal or fractional portion of x, leaving only the integer part.

Page 6

Section 1.1 Functions and Their Graphs 5 37. Symmetric about the origin 38. Symmetric about the y-axis Dec: x Dec: x _   _ _   ! Inc: nowhere Inc: x !   _ 39. Symmetric about the origin 40. Symmetric about the y-axis Dec: nowhere Dec: x !   _ Inc: x Inc: x _   ! _   ! x !   _ 41. Symmetric about the y-axis 42. No symmetry Dec: x Dec: x _  Ÿ ! _  Ÿ ! Inc: x Inc: nowhere !   _

Page 7

6 Chapter 1 Functions 43. Symmetric about the origin 44. No symmetry Dec: nowhere Dec: x ! Ÿ  _ Inc: x Inc: nowhere _   _ 45. No symmetry 46. Symmetric about the y-axis Dec: x Dec: x ! Ÿ  _ _  Ÿ ! Inc: nowhere Inc: x !   _ 47. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the function is even. 48. f x x and f x x f x . Thus the function is odd. a b a b a b a b ˆ œ œ  œ  œ œ  œ  & " " " &  x x x & & & a b 49. Since f x x x f x . The function is even. a b a b a b œ  " œ   " œ  # # 50. Since f x x x f x x x and f x x x f x x x the function is neither even nor Ò œ  Ó Á Ò  œ   Ó Ò œ  Ó Á Ò œ   Ó a b a b a b a b a b a b # # # # odd. 51. Since g x x x, g x x x x x g x . So the function is odd. a b a b a b a b œ   œ   œ   œ  $ $ $ 52. g x x x x x g x thus the function is even. a b a b a b a b œ  $  " œ   $   " œ  ß % # % # 53. g x g x . Thus the function is even. a b a b œ œ œ  " "  "  " x x # # a b 54. g x ; g x g x . So the function is odd. a b a b a b œ  œ  œ  x x x x # #  " " 55. h t ; h t ; h t . Since h t h t and h t h t , the function is neither even nor odd. a b a b a b a b a b a b a b œ  œ  œ Á  Á  " " "  "   " "  t t t 56. Since t | t |, h t h t and the function is even. l œ l  œ  $ $ a b a b a b

Page 8

Section 1.1 Functions and Their Graphs 7 57. h t 2t , h t 2t . So h t h t . h t 2t , so h t h t . The function is neither even nor a b a b a b a b a b a b a b œ  "  œ   " Á   œ   " Á  odd. 58. h t 2 t and h t 2 t 2 t . So h t h t and the function is even. a b a b a b a b œ l l  "  œ l  l  " œ l l  " œ  59. s kt 25 k 75 k s t; 60 t t 180 œ Ê œ Ð Ñ Ê œ Ê œ œ Ê œ " " " 3 3 3 60. K c v 12960 c 18 c 40 K 40v ; K 40 10 4000 joules œ Ê œ Ê œ Ê œ œ œ # # # a b a b 2 61. r 6 k 24 r ; 10 s œ Ê œ Ê œ Ê œ œ Ê œ k k 24 24 12 s 4 s s 5 62. P 14.7 k 14700 P ; 23.4 v 628.2 in œ Ê œ Ê œ Ê œ œ Ê œ ¸ k k 14700 14700 24500 v 1000 v v 39 3 63. v f(x) x 2x 22 2x x 72x x; x 7 œ œ Ð"%  ÑÐ  Ñ œ %   $!) !   Þ $ # 64. (a) Let h height of the triangle. Since the triangle is isosceles, AB AB 2 AB 2 So, œ  œ Ê œ Þ # # # È h 2 h B is at slope of AB The equation of AB is # # #  " œ Ê œ " Ê !ß " Ê œ " Ê Š È a b y f(x) x ; x . œ œ   " − Ò!ß "Ó (b) A x 2x y 2x x 2x x; x . Ð Ñ œ œ Ð  "Ñ œ   # − Ò!ß "Ó # 65. (a) Graph h because it is an even function and rises less rapidly than does Graph g. (b) Graph f because it is an odd function. (c) Graph g because it is an even function and rises more rapidly than does Graph h. 66. (a) Graph f because it is linear. (b) Graph g because it contains . a b !ß " (c) Graph h because it is a nonlinear odd function. 67. (a) From the graph, 1 x ( 2 0) ( ) x 4 x #   Ê  ß  %ß _ (b) 1 1 0 x 4 x 4 x x # #   Ê    x 0: 1 0 0 0     Ê  Ê  x 4 x 2x 8 x 2x x (x 4)(x 2) # #     # x 4 since x is positive; Ê  x 0: 1 0 0 0     Ê  Ê  x 4 x 2x 8 2 x 2x x (x 4)(x 2) #     # x 2 since x is negative; Ê   sign of (x 4)(x 2)   2 ïïïïïðïïïïïðïïïïî     % Solution interval: ( 0) ( ) #ß  %ß _

Page 9

8 Chapter 1 Functions 68. (a) From the graph, x ( 5) ( 1 1) 3 2 x 1 x 1    Ê _ß    ß (b) x 1: 2 Case    Ê  3 2 x 1 x 1 x 1 3(x 1)     3x 3 2x 2 x 5. Ê    Ê   Thus, x ( 5) solves the inequality. _ß  1 x 1: 2 Case     Ê  3 2 x 1 x 1 x 1 3(x 1)     3x 3 2x 2 x 5 which is true Ê    Ê   if x 1. Thus, x ( 1 1) solves the    ß inequality. 1 x: 3x 3 2x 2 x 5 Case   Ê    Ê   3 2 x 1 x 1   which is never true if 1 x, so no solution here.  In conclusion, x ( 5) ( 1 1). _ß    ß 69. A curve symmetric about the x-axis will not pass the vertical line test because the points x, y and x, y lie on the sam a b a b  e vertical line. The graph of the function y f x is the x-axis, a horizontal line for which there is a single y-value, , œ œ ! ! a b for any x. 70. price 40 5x, quantity 300 25x R x 40 5x 300 25x œ  œ  Ê œ   a b a ba b 71. x x h x ; cost 5 2x 10h C h 10 10h 5h 2 2 2 2 2 h 2 2 h 2 h 2 2  œ Ê œ œ œ  Ê œ  œ  È È È a b a b Š Š È 72. (a) Note that 2 mi = 10,560 ft, so there are 800 x feet of river cable at $180 per foot and 10,560 x feet of land È a b # #   cable at $100 per foot. The cost is C x 180 800 x 100 10,560 x . a b a b È œ    # # (b) C $ a b ! œ "ß #!!ß !!! C $ a b &!! ¸ "ß "(&ß )"# C $ a b "!!! ¸ "ß ")'ß &"# C $ a b "&!! ¸ "ß #"#ß !!! C $ a b #!!! ¸ "ß #%$ß ($# C $ a b #&!! ¸ "ß #()ß %(* C $ a b $!!! ¸ "ß $"%ß )(! Values beyond this are all larger. It would appear that the least expensive location is less than 2000 feet from the point P. 1.2 COMBINING FUNCTIONS; SHIFTING AND SCALING GRAPHS 1. D : x , D : x 1 D D : x 1. R : y , R : y 0, R : y 1, R : y 0 f g f g fg f g f g fg _   _ Ê œ _   _ 2. D : x 1 0 x 1, D : x 1 0 x 1. Therefore D D : x 1. f g f g fg  Ê   Ê œ R R : y 0, R : y 2, R : y 0 f g f g fg œ È 3. D : x , D : x , D : x , D : x , R : y 2, R : y 1, f g f g g f f g _   _ _   _ _   _ _   _ œ Î Î R : 0 y 2, R : y f g Î  Ÿ Ÿ  _ g f Î " # 4. D : x , D : x 0 , D : x 0, D : x 0; R : y 1, R : y 1, R : 0 y 1, R : 1 y f g f g g f f g f g _   _ œ  Ÿ Ÿ  _ Î Î Î g f Î 5. (a) 2 (b) 22 (c) x 2 #  (d) (x 5) 3 x 10x 22 (e) 5 (f) 2   œ    # # (g) x 10 (h) (x 3) 3 x 6x 6    œ   # # % #

Page 10

Section 1.2 Combining Functions; Shifting and Scaling Graphs 9 6. (a) (b) 2 (c) 1   œ " "    3 x 1 x 1 x (d) (e) 0 (f) " x 4 3 (g) x 2 (h)  œ œ " "  "   # " # x 1 x 1 x 1 x x 7. f g h x f g h x f g 4 x f 3 4 x f 12 3x 12 3x 1 13 3x a ba b a b a b a b a b a b a b a b a b a b ‰ ‰ œ œ  œ  œ  œ   œ  8. f g h x f g h x f g x f 2 x 1 f 2x 1 3 2x 1 4 6x 1 a ba b a b a b a b a b a b a b a b a b a b ‰ ‰ œ œ œ  œ  œ   œ  2 2 2 2 2 9. f g h x f g h x f g f f a ba b a b É a b a b ˆ ˆ ˆ ‰ Š É ‰ ‰ œ œ œ œ œ  " œ 1 1 x x 5x x 1 4x 1 4x 1 4x 1 x  %     " 10. f g h x f g h x f g 2 x f f a ba b a b a b a b Š Š È   ˆ ‰ ‰ œ œ  œ œ œ œ Š È Š È 2 x 2 x 1 2 x 8 3x x 7 2x 2 3      $     2 2 2 x 2 x x x $ $ 11. (a) f g x (b) j g x (c) g g x a ba b a ba b a ba b (d) j j x (e) g h f x (f) h j f x a ba b a ba b a ba b ‰ ‰ ‰ ‰ 12. (a) f j x (b) g h x (c) h h x a ba b a ba b a ba b (d) f f x (e) j g f x (f) g f h x a ba b a ba b a ba b ‰ ‰ ‰ ‰ 13. g(x) f(x) (f g)(x) (a) x 7 x x 7   È È (b) x 2 3x 3(x 2) 3x 6   œ  (c) x x 5 x 5 # # È È   (d) x x x x x 1 x 1 1 x (x 1)      x x 1 x x 1 œ œ (e) 1 x " "  x 1 x  (f) x " " x x 14. (a) f g x g x . a ba b a b œ l l œ " l  "l x (b) f g x so g x x . a ba b a b œ œ Ê "  œ Ê "  œ Ê œ ß œ  " g x g x x g x x x g x x g x x x x a b a b a b a b a b "  "  "  "  " " " " " (c) Since f g x g x x , g x x . a ba b a b a b È œ œ l l œ # (d) Since f g x f x x , f x x . (Note that the domain of the composite is .) a ba b a b ˆ È œ œ l l œ Ò!ß _Ñ # The completed table is shown. Note that the absolute value sign in part (d) is optional. g x f x f g x x x x x x x x x a b a b a ba b È È l l  " l l l l " "  " l  "l  "  " # # x x x x x x 15. (a) f g 1 f 1 1 (b) g f 0 g 2 2 (c) f f 1 f 0 2 a b a b a b a b a b a b a b a b a b  œ œ œ  œ  œ œ  (d) g g 2 g 0 0 (e) g f 2 g 1 1 (f) f g 1 f 1 0 a b a b a b a b a b a b a b a b a b œ œ  œ œ  œ  œ 16. (a) f g 0 f 1 2 1 3, where g 0 0 1 1 a b a b a b a b a b œ  œ   œ œ  œ  (b) g f 3 g 1 1 1, where f 3 2 3 1 a b a b a b a b a b œ  œ   œ œ  œ  (c) g g 1 g 1 1 1 0, where g 1 1 1 a b a b a b a b a b  œ œ  œ  œ   œ

Page 11

10 Chapter 1 Functions (d) f f 2 f 0 2 0 2, where f 2 2 2 0 a b a b a b a b œ œ  œ œ  œ (e) g f 0 g 2 2 1 1, where f 0 2 0 2 a b a b a b a b œ œ  œ œ  œ (f) f g f 2 , where g 1 ˆ ˆ ˆ ˆ ‰ ˆ ‰ " " " " " " # # # # # # # œ  œ   œ œ  œ  5 17. (a) f g x f g x 1 a ba b a b a b É É œ œ  œ 1 1 x x x  g f x g f x a ba b a b a b œ œ 1 x 1 È  (b) Domain f g : , 1 0, , domain g f : 1, a b a b Ð_  Ó  Ð Ð (c) Range f g : 1, , range g f : 0, a b a b Ð Ð 18. (a) f g x f g x 1 2 x x a ba b a b a b È œ œ   g f x g f x 1 x a ba b a b k k a b œ œ  (b) Domain f g : 0, , domain g f : , a b a b Ò Ð_ _Ñ (c) Range f g : 0, , range g f : , 1 a b a b Ð Ð_ Ó 19. f g x x f g x x x g x g x 2 x x g x 2x a ba b a b a b a b a b a b a b œ Ê œ Ê œ Ê œ  œ  g x g x 2 a b a b  g x x g x 2x g x Ê  œ  Ê œ  œ a b a b a b 2x 2x 1 x x 1   20. f g x x 2 f g x x 2 2 g x 4 x 2 g x g x a ba b a b a b a b a b a b a b a b É œ  Ê œ  Ê  œ  Ê œ Ê œ 3 3 x 6 x 6 2 2   3 21. (a) y (x 7) (b) y (x 4) œ   œ   # # 22. (a) y x 3 (b) y x 5 œ  œ  # # 23. (a) Position 4 (b) Position 1 (c) Position 2 (d) Position 3 24. (a) y (x 1) 4 (b) y (x 2) 3 (c) y (x 4) 1 (d) y (x 2) œ    œ    œ    œ   # # # # 25. 26. 27. 28.

Page 12

Section 1.2 Combining Functions; Shifting and Scaling Graphs 11 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

Page 13

12 Chapter 1 Functions 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52.

Page 14

Section 1.2 Combining Functions; Shifting and Scaling Graphs 13 53. 54. 55. (a) domain: [0 2]; range: [ ] (b) domain: [0 2]; range: [ 1 0] ß #ß $ ß  ß (c) domain: [0 2]; range: [0 2] (d) domain: [0 2]; range: [ 1 0] ß ß ß  ß (e) domain: [ 2 0]; range: [ 1] (f) domain: [1 3]; range: [ ]  ß ß !ß " (g) domain: [ 2 0]; range: [ ] (h) domain: [ 1 1]; range: [ ]  ß !ß "  ß !ß "

Page 15

14 Chapter 1 Functions 56. (a) domain: [0 4]; range: [ 3 0] (b) domain: [ 4 0]; range: [ ] ß  ß  ß !ß $ (c) domain: [ 4 0]; range: [ ] (d) domain: [ 4 0]; range: [ ]  ß !ß $  ß "ß % (e) domain: [ 4]; range: [ 3 0] (f) domain: [ 2 2]; range: [ 3 0]  ß  ß  ß (g) domain: [ 5]; range: [ 3 0] (h) domain: [0 4]; range: [0 3]  ß ß ß 57. y 3x 3 58. y 2x 1 x 1 œ  œ  œ %  # # # a b 59. y 60. y 1 1 œ "  œ  œ  œ  " " " " " * # # # Î$ ˆ x x x x # # # # a b 61. y x 1 62. y 3 x 1 œ %  œ  È È 63. y 16 x 64. y x œ %  œ  œ %  É ˆ ‰ È È x # # $ # " " # # 65. y 3x 27x 66. y œ "  œ "  œ "  œ "  a b ˆ ‰ $ $ # ) $ x x $

Page 16

Section 1.2 Combining Functions; Shifting and Scaling Graphs 15 67. Let y x f x and let g x x , œ  #  " œ œ È a b a b "Î# h x x , i x x , and a b a b ˆ ˆ È œ  œ #  " " # # "Î# "Î# j x x f . The graph of a b a b È ˆ œ  #  œ B " # "Î# h x is the graph of g x shifted left unit; the a b a b " # graph of i x is the graph of h x stretched a b a b vertically by a factor of ; and the graph of È # j x f x is the graph of i x reflected across a b a b a b œ the x-axis. 68. Let y f x Let g x x , œ "  œ Þ œ  È a b a b a b x # "Î# h x x , and i x x a b a b a b a b œ   # œ   # "Î# "Î# " # È f x The graph of g x is the œ "  œ Þ È a b a b x # graph of y x reflected across the x-axis. œ È The graph of h x is the graph of g x shifted a b a b right two units. And the graph of i x is the a b graph of h x compressed vertically by a factor a b of . È # 69. y f x x . Shift f x one unit right followed by a œ œ a b a b $ shift two units up to get g x x . a b a b œ  "  # 3 70. y x f x . œ "  B  # œ Ò  "  # Ó œ a b a b a b a b $ $ Let g x x , h x x , i x x , a b a b a b a b a b a b œ œ  " œ  "  # $ $ $ and j x x . The graph of h x is the a b a b a b a b œ Ò  "  # Ó $ graph of g x shifted right one unit; the graph of i x is a b a b the graph of h x shifted down two units; and the graph a b of f x is the graph of i x reflected across the x-axis. a b a b 71. Compress the graph of f x horizontally by a factor a b œ " x of 2 to get g x . Then shift g x vertically down 1 a b a b œ " # x unit to get h x . a b œ  " " # x
CHAPTER 1 FUNCTIONS 1.1 FUNCTIONS AND THEIR GRAPHS 1. domain ( ); range [1 ) 2. domain [0 ); range ( 1] œ _ß _ œ ß _ œ ß _ œ _ß 3. domain 2 ); y in range and y 5x 10 y can be any positive real number range ). œ Ò ß _ œ  ! Ê Ê œ Ò!ß _ È 4. domain ( 0 3, ); y in range and y x 3x y can be any positive real number range ). œ _ß Ó  Ò _ œ  ! Ê Ê œ Ò!ß _ È 2 5. domain ( 3 3, ); y in range and y , now if t 3 3 t , or if t 3 œ _ß Ñ  Ð _ œ  Ê   ! Ê  !  4 4 3 t 3 t   3 t y can be any nonzero real number range 0 ). Ê   ! Ê  ! Ê Ê œ Ð_ß Ñ  Ð!ß _ 4 3 t  6. domain ( 4, 4 4, ); y in range and y , now if t t 16 , or if œ _ß %Ñ  Ð Ñ  Ð _ œ  % Ê   ! Ê  ! 2 2 t 16 t 16 2 2 2   t 4 16 t 16 , or if t t 16 y can be any %   Ê  Ÿ   ! Ê  Ÿ  !  % Ê   ! Ê  ! Ê 2 2 2 2 t 16 t 16 # "'   2 2 nonzero real number range ). Ê œ Ð_ß  Ó  Ð!ß _ 1 8 7. (a) Not the graph of a function of x since it fails the vertical line test. (b) Is the graph of a function of x since any vertical line intersects the graph at most once. 8. (a) Not the graph of a function of x since it fails the vertical line test. (b) Not the graph of a function of x since it fails the vertical line test. 9. base x; (height) x height x; area is a(x) (base)(height) (x) x x ; œ  œ Ê œ œ œ œ # # # # # # # # # " " ˆ ‰ Š ‹ x 3 3 3 4 È È È perimeter is p(x) x x x 3x. œ   œ 10. s side length s s d s ; and area is a s a d œ Ê  œ Ê œ œ Ê œ # # # # # " # d 2 È 11. Let D diagonal length of a face of the cube and the length of an edge. Then D d and œ j œ j  œ # # # D 2 3 d . The surface area is 6 2d and the volume is . # # # # # # $ $Î# œ j Ê j œ Ê j œ j œ œ j œ œ d 6d d d 3 3 3 3 3 È È # # $ Š ‹ 12. The coordinates of P are x x so the slope of the line joining P to the origin is m (x 0). Thus, ˆ ‰ È ß œ œ  È È x x x " x, x , . ˆ ‰ ˆ ‰ È œ " " m m # 13. 2x 4y 5 y x ; L x 0 y 0 x x x x x  œ Ê œ   œ Ð  Ñ  Ð  Ñ œ  Ð  Ñ œ    " " " # # 5 5 5 25 4 4 4 4 16 2 2 2 2 2 2 È É É x x œ   œ œ É É 5 5 25 20x 20x 25 4 4 16 16 4 2 20x 20x 25 2 2     È 14. y x 3 y 3 x; L x 4 y 0 y 3 4 y y 1 y œ  Ê  œ œ Ð  Ñ  Ð  Ñ œ Ð   Ñ  œ Ð  Ñ  È È È È 2 2 2 2 2 2 2 2 2 y 2y 1 y y y 1 œ    œ   È È 4 2 2 4 2 2 Chapter 1 Functions 15. The domain is . 16. The domain is . a b a b _ß _ _ß _ 17. The domain is . 18. The domain is . a b _ß _ Ð_ß !Ó 19. The domain is . 20. The domain is . a b a b a b a b _ß !  !ß _ _ß !  !ß _ 21. The domain is 5 5 3 3, 5 5, 22. The range is 2, 3 . a b a b _ß   Ð ß  Ó  Ò Ñ  _ Ò Ñ 23. Neither graph passes the vertical line test (a) (b) Section 1.1 Functions and Their Graphs 3 24. Neither graph passes the vertical line test (a) (b) x y 1 x y y 1 x or or x y y x k k Ú Þ Ú Þ Û ß Û ß Ü à Ü à  œ Í Í  œ " œ   œ " œ "  25. x 0 1 2 26. x 0 1 2 y 0 1 0 y 1 0 0 27. F x 28. G x 4 x , x 1 x 2x, x 1 , x 0 x, 0 x a b a b œ œ œ œ  Ÿ    Ÿ 2 2 x " 29. (a) Line through and : y x; Line through and : y x 2 a b a b a b a b !ß ! "ß " œ "ß " #ß ! œ   f(x) x, 0 x 1 x 2, 1 x 2 œ Ÿ Ÿ    Ÿ œ (b) f(x) 2, x x 2 x x œ ! Ÿ  " !ß " Ÿ  # ß # Ÿ  $ !ß $ Ÿ Ÿ % Ú Ý Ý Û Ý Ý Ü 30. (a) Line through 2 and : y x 2 a b a b !ß #ß ! œ   Line through 2 and : m , so y x 2 x a b a b a b ß " &ß ! œ œ œ  œ    " œ   !  " " " " " & &  # $ $ $ $ $ f(x) x , 0 x x , x œ   #  Ÿ #   #  Ÿ & œ " & $ $ (b) Line through and : m , so y x a b a b "ß ! !ß $ œ œ $ œ $  $ $  ! !  Ð"Ñ Line through and : m , so y x a b a b !ß $ #ß " œ œ œ # œ #  $ "  $ % #  ! # f(x) x , x x , x œ $  $ "  Ÿ ! #  $ !  Ÿ # œ 4 Chapter 1 Functions 31. (a) Line through and : y x a b a b "ß " !ß ! œ  Line through and : y a b a b !ß " "ß " œ " Line through and : m , so y x x a b a b a b "ß " $ß ! œ œ œ  œ   "  " œ   !" " " " " $ $" # # # # # f(x) x x x x x œ  " Ÿ  ! " !  Ÿ "   "   $ Ú Û Ü " $ # # (b) Line through 2 1 and 0 0 : y x a b a b  ß  ß œ 1 2 Line through 0 2 and 1 0 : y 2x 2 a b a b ß ß œ   Line through 1 1 and 3 1 : y 1 a b a b ß  ß  œ  f x x 2 x 0 2x 2 0 x 1 1 1 x 3 a b Ú Û Ü œ  Ÿ Ÿ    Ÿ   Ÿ 1 2 32. (a) Line through and T : m , so y x 0 x ˆ ‰ ˆ ‰ a b T T T T T T T #  Î# # "! # # # ß ! ß " œ œ œ   œ  " a b f x , 0 x x , x T a b  œ ! Ÿ Ÿ  "  Ÿ T T T # # # (b) f x A, x A x T A T x A x T a b Ú Ý Ý Ý Û Ý Ý Ý Ü œ ! Ÿ   ß Ÿ  ß Ÿ   ß Ÿ Ÿ # T T T T # # $ # $ # 33. (a) x 0 for x [0 1) (b) x 0 for x ( 1 0] Ú Û œ − ß Ü Ý œ −  ß 34. x x only when x is an integer. Ú Û œ Ü Ý 35. For any real number x, n x n , where n is an integer. Now: n x n n x n. By Ÿ Ÿ  " Ÿ Ÿ  " Ê Ð  "Ñ Ÿ  Ÿ  definition: x n and x n x n. So x x for all x . Ü Ý œ  Ú Û œ Ê Ú Û œ  Ü Ý œ Ú Û − d 36. To find f(x) you delete the decimal or fractional portion of x, leaving only the integer part. Section 1.1 Functions and Their Graphs 5 37. Symmetric about the origin 38. Symmetric about the y-axis Dec: x Dec: x _   _ _   ! Inc: nowhere Inc: x !   _ 39. Symmetric about the origin 40. Symmetric about the y-axis Dec: nowhere Dec: x !   _ Inc: x Inc: x _   ! _   ! x !   _ 41. Symmetric about the y-axis 42. No symmetry Dec: x Dec: x _  Ÿ ! _  Ÿ ! Inc: x Inc: nowhere !   _ 6 Chapter 1 Functions 43. Symmetric about the origin 44. No symmetry Dec: nowhere Dec: x ! Ÿ  _ Inc: x Inc: nowhere _   _ 45. No symmetry 46. Symmetric about the y-axis Dec: x Dec: x ! Ÿ  _ _  Ÿ ! Inc: nowhere Inc: x !   _ 47. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the function is even. 48. f x x and f x x f x . Thus the function is odd. a b a b a b a b ˆ ‰ œ œ  œ  œ œ  œ  & " " " &  x x x & & & a b 49. Since f x x x f x . The function is even. a b a b a b œ  " œ   " œ  # # 50. Since f x x x f x x x and f x x x f x x x the function is neither even nor Ò œ  Ó Á Ò  œ   Ó Ò œ  Ó Á Ò œ   Ó a b a b a b a b a b a b # # # # odd. 51. Since g x x x, g x x x x x g x . So the function is odd. a b a b a b a b œ   œ   œ   œ  $ $ $ 52. g x x x x x g x thus the function is even. a b a b a b a b œ  $  " œ   $   " œ  ß % # % # 53. g x g x . Thus the function is even. a b a b œ œ œ  " "  "  " x x # # a b 54. g x ; g x g x . So the function is odd. a b a b a b œ  œ  œ  x x x x # #  " " 55. h t ; h t ; h t . Since h t h t and h t h t , the function is neither even nor odd. a b a b a b a b a b a b a b œ  œ  œ Á  Á  " " "  "   " "  t t t 56. Since t | t |, h t h t and the function is even. l œ l  œ  $ $ a b a b a b Section 1.1 Functions and Their Graphs 7 57. h t 2t , h t 2t . So h t h t . h t 2t , so h t h t . The function is neither even nor a b a b a b a b a b a b a b œ  "  œ   " Á   œ   " Á  odd. 58. h t 2 t and h t 2 t 2 t . So h t h t and the function is even. a b a b a b a b œ l l  "  œ l  l  " œ l l  " œ  59. s kt 25 k 75 k s t; 60 t t 180 œ Ê œ Ð Ñ Ê œ Ê œ œ Ê œ " " " 3 3 3 60. K c v 12960 c 18 c 40 K 40v ; K 40 10 4000 joules œ Ê œ Ê œ Ê œ œ œ # # # a b a b 2 61. r 6 k 24 r ; 10 s œ Ê œ Ê œ Ê œ œ Ê œ k k 24 24 12 s 4 s s 5 62. P 14.7 k 14700 P ; 23.4 v 628.2 in œ Ê œ Ê œ Ê œ œ Ê œ ¸ k k 14700 14700 24500 v 1000 v v 39 3 63. v f(x) x 2x 22 2x x 72x x; x 7 œ œ Ð"%  ÑÐ  Ñ œ %   $!) !   Þ $ # 64. (a) Let h height of the triangle. Since the triangle is isosceles, AB AB 2 AB 2 So, œ  œ Ê œ Þ # # # È h 2 h B is at slope of AB The equation of AB is # # #  " œ Ê œ " Ê !ß " Ê œ " Ê Š ‹ È a b y f(x) x ; x . œ œ   " − Ò!ß "Ó (b) A x 2x y 2x x 2x x; x . Ð Ñ œ œ Ð  "Ñ œ   # − Ò!ß "Ó # 65. (a) Graph h because it is an even function and rises less rapidly than does Graph g. (b) Graph f because it is an odd function. (c) Graph g because it is an even function and rises more rapidly than does Graph h. 66. (a) Graph f because it is linear. (b) Graph g because it contains . a b !ß " (c) Graph h because it is a nonlinear odd function. 67. (a) From the graph, 1 x ( 2 0) ( ) x 4 x #   Ê −  ß  %ß _ (b) 1 1 0 x 4 x 4 x x # #   Ê    x 0: 1 0 0 0     Ê  Ê  x 4 x 2x 8 x 2x x (x 4)(x 2) # #     # x 4 since x is positive; Ê  x 0: 1 0 0 0     Ê  Ê  x 4 x 2x 8 2 x 2x x (x 4)(x 2) #     # x 2 since x is negative; Ê   sign of (x 4)(x 2)   2 ïïïïïðïïïïïðïïïïî     % Solution interval: ( 0) ( ) #ß  %ß _ 8 Chapter 1 Functions 68. (a) From the graph, x ( 5) ( 1 1) 3 2 x 1 x 1    Ê − _ß    ß (b) x 1: 2 Case    Ê  3 2 x 1 x 1 x 1 3(x 1)     3x 3 2x 2 x 5. Ê    Ê   Thus, x ( 5) solves the inequality. − _ß  1 x 1: 2 Case     Ê  3 2 x 1 x 1 x 1 3(x 1)     3x 3 2x 2 x 5 which is true Ê    Ê   if x 1. Thus, x ( 1 1) solves the   −  ß inequality. 1 x: 3x 3 2x 2 x 5 Case   Ê    Ê   3 2 x 1 x 1   which is never true if 1 x, so no solution here.  In conclusion, x ( 5) ( 1 1). − _ß    ß 69. A curve symmetric about the x-axis will not pass the vertical line test because the points x, y and x, y lie on the sam a b a b  e vertical line. The graph of the function y f x is the x-axis, a horizontal line for which there is a single y-value, , œ œ ! ! a b for any x. 70. price 40 5x, quantity 300 25x R x 40 5x 300 25x œ  œ  Ê œ   a b a ba b 71. x x h x ; cost 5 2x 10h C h 10 10h 5h 2 2 2 2 2 h 2 2 h 2 h 2 2  œ Ê œ œ œ  Ê œ  œ  È È È a b a b Š ‹ Š ‹ È 72. (a) Note that 2 mi = 10,560 ft, so there are 800 x feet of river cable at $180 per foot and 10,560 x feet of land È a b # #   cable at $100 per foot. The cost is C x 180 800 x 100 10,560 x . a b a b È œ    # # (b) C $ a b ! œ "ß #!!ß !!! C $ a b &!! ¸ "ß "(&ß )"# C $ a b "!!! ¸ "ß ")'ß &"# C $ a b "&!! ¸ "ß #"#ß !!! C $ a b #!!! ¸ "ß #%$ß ($# C $ a b #&!! ¸ "ß #()ß %(* C $ a b $!!! ¸ "ß $"%ß )(! Values beyond this are all larger. It would appear that the least expensive location is less than 2000 feet from the point P. 1.2 COMBINING FUNCTIONS; SHIFTING AND SCALING GRAPHS 1. D : x , D : x 1 D D : x 1. R : y , R : y 0, R : y 1, R : y 0 f g f g fg f g f g fg _   _ Ê œ _   _ 2. D : x 1 0 x 1, D : x 1 0 x 1. Therefore D D : x 1. f g f g fg  Ê   Ê œ R R : y 0, R : y 2, R : y 0 f g f g fg œ È 3. D : x , D : x , D : x , D : x , R : y 2, R : y 1, f g f g g f f g _   _ _   _ _   _ _   _ œ Î Î R : 0 y 2, R : y f g Î  Ÿ Ÿ  _ g f Î " # 4. D : x , D : x 0 , D : x 0, D : x 0; R : y 1, R : y 1, R : 0 y 1, R : 1 y f g f g g f f g f g _   _ œ  Ÿ Ÿ  _ Î Î Î g f Î 5. (a) 2 (b) 22 (c) x 2 #  (d) (x 5) 3 x 10x 22 (e) 5 (f) 2   œ    # # (g) x 10 (h) (x 3) 3 x 6x 6    œ   # # % # Section 1.2 Combining Functions; Shifting and Scaling Graphs 9 6. (a) (b) 2 (c) 1   œ " "    3 x 1 x 1 x (d) (e) 0 (f) " x 4 3 (g) x 2 (h)  œ œ " "  "   # " # x 1 x 1 x 1 x x 7. f g h x f g h x f g 4 x f 3 4 x f 12 3x 12 3x 1 13 3x a ba b a b a b a b a b a b a b a b a b a b ‰ ‰ œ œ  œ  œ  œ   œ  8. f g h x f g h x f g x f 2 x 1 f 2x 1 3 2x 1 4 6x 1 a ba b a b a b a b a b a b a b a b a b a b ‰ ‰ œ œ œ  œ  œ   œ  2 2 2 2 2 9. f g h x f g h x f g f f a ba b a b É a b a b ˆ ‰ ˆ ‰ ˆ ‰ Š ‹ É ‰ ‰ œ œ œ œ œ  " œ 1 1 x x 5x x 1 4x 1 4x 1 4x 1 x  %     " 10. f g h x f g h x f g 2 x f f a ba b a b a b a b Š ‹ Š ‹ È   ˆ ‰ ‰ ‰ œ œ  œ œ œ œ Š ‹ È Š ‹ È 2 x 2 x 1 2 x 8 3x x 7 2x 2 3      $     2 2 2 x 2 x x x $ $ 11. (a) f g x (b) j g x (c) g g x a ba b a ba b a ba b ‰ ‰ ‰ (d) j j x (e) g h f x (f) h j f x a ba b a ba b a ba b ‰ ‰ ‰ ‰ ‰ 12. (a) f j x (b) g h x (c) h h x a ba b a ba b a ba b ‰ ‰ ‰ (d) f f x (e) j g f x (f) g f h x a ba b a ba b a ba b ‰ ‰ ‰ ‰ ‰ 13. g(x) f(x) (f g)(x) ‰ (a) x 7 x x 7   È È (b) x 2 3x 3(x 2) 3x 6   œ  (c) x x 5 x 5 # # È È   (d) x x x x x 1 x 1 1 x (x 1)      x x 1 x x 1 œ œ (e) 1 x " "  x 1 x  (f) x " " x x 14. (a) f g x g x . a ba b a b ‰ œ l l œ " l  "l x (b) f g x so g x x . a ba b a b ‰ œ œ Ê "  œ Ê "  œ Ê œ ß œ  " g x g x x g x x x g x x g x x x x a b a b a b a b a b "  "  "  "  " " " " " (c) Since f g x g x x , g x x . a ba b a b a b È ‰ œ œ l l œ # (d) Since f g x f x x , f x x . (Note that the domain of the composite is .) a ba b a b ˆ ‰ È ‰ œ œ l l œ Ò!ß _Ñ # The completed table is shown. Note that the absolute value sign in part (d) is optional. g x f x f g x x x x x x x x x a b a b a ba b È È ‰ l l  " l l l l " "  " l  "l  "  " # # x x x x x x 15. (a) f g 1 f 1 1 (b) g f 0 g 2 2 (c) f f 1 f 0 2 a b a b a b a b a b a b a b a b a b  œ œ œ  œ  œ œ  (d) g g 2 g 0 0 (e) g f 2 g 1 1 (f) f g 1 f 1 0 a b a b a b a b a b a b a b a b a b œ œ  œ œ  œ  œ 16. (a) f g 0 f 1 2 1 3, where g 0 0 1 1 a b a b a b a b a b œ  œ   œ œ  œ  (b) g f 3 g 1 1 1, where f 3 2 3 1 a b a b a b a b a b œ  œ   œ œ  œ  (c) g g 1 g 1 1 1 0, where g 1 1 1 a b a b a b a b a b  œ œ  œ  œ   œ 10 Chapter 1 Functions (d) f f 2 f 0 2 0 2, where f 2 2 2 0 a b a b a b a b œ œ  œ œ  œ (e) g f 0 g 2 2 1 1, where f 0 2 0 2 a b a b a b a b œ œ  œ œ  œ (f) f g f 2 , where g 1 ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ " " " " " " # # # # # # # œ  œ   œ œ  œ  5 17. (a) f g x f g x 1 a ba b a b a b É É ‰ œ œ  œ 1 1 x x x  g f x g f x a ba b a b a b ‰ œ œ 1 x 1 È  (b) Domain f g : , 1 0, , domain g f : 1, a b a b ‰ Ð_  Ó  Ð _Ñ ‰ Ð _Ñ (c) Range f g : 1, , range g f : 0, a b a b ‰ Ð _Ñ ‰ Ð _Ñ 18. (a) f g x f g x 1 2 x x a ba b a b a b È ‰ œ œ   g f x g f x 1 x a ba b a b k k a b ‰ œ œ  (b) Domain f g : 0, , domain g f : , a b a b ‰ Ò _Ñ ‰ Ð_ _Ñ (c) Range f g : 0, , range g f : , 1 a b a b ‰ Ð _Ñ ‰ Ð_ Ó 19. f g x x f g x x x g x g x 2 x x g x 2x a ba b a b a b a b a b a b a b ‰ œ Ê œ Ê œ Ê œ  œ †  g x g x 2 a b a b  g x x g x 2x g x Ê  † œ  Ê œ  œ a b a b a b 2x 2x 1 x x 1   20. f g x x 2 f g x x 2 2 g x 4 x 2 g x g x a ba b a b a b a b a b a b a b a b É ‰ œ  Ê œ  Ê  œ  Ê œ Ê œ 3 3 x 6 x 6 2 2   3 21. (a) y (x 7) (b) y (x 4) œ   œ   # # 22. (a) y x 3 (b) y x 5 œ  œ  # # 23. (a) Position 4 (b) Position 1 (c) Position 2 (d) Position 3 24. (a) y (x 1) 4 (b) y (x 2) 3 (c) y (x 4) 1 (d) y (x 2) œ    œ    œ    œ   # # # # 25. 26. 27. 28. Section 1.2 Combining Functions; Shifting and Scaling Graphs 11 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 12 Chapter 1 Functions 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. Section 1.2 Combining Functions; Shifting and Scaling Graphs 13 53. 54. 55. (a) domain: [0 2]; range: [ ] (b) domain: [0 2]; range: [ 1 0] ß #ß $ ß  ß (c) domain: [0 2]; range: [0 2] (d) domain: [0 2]; range: [ 1 0] ß ß ß  ß (e) domain: [ 2 0]; range: [ 1] (f) domain: [1 3]; range: [ ]  ß !ß ß !ß " (g) domain: [ 2 0]; range: [ ] (h) domain: [ 1 1]; range: [ ]  ß !ß "  ß !ß " 14 Chapter 1 Functions 56. (a) domain: [0 4]; range: [ 3 0] (b) domain: [ 4 0]; range: [ ] ß  ß  ß !ß $ (c) domain: [ 4 0]; range: [ ] (d) domain: [ 4 0]; range: [ ]  ß !ß $  ß "ß % (e) domain: [ 4]; range: [ 3 0] (f) domain: [ 2 2]; range: [ 3 0] #ß  ß  ß  ß (g) domain: [ 5]; range: [ 3 0] (h) domain: [0 4]; range: [0 3] "ß  ß ß ß 57. y 3x 3 58. y 2x 1 x 1 œ  œ  œ %  # # # a b 59. y 60. y 1 1 œ "  œ  œ  œ  " " " " " * # # # Î$ ˆ ‰ x x x x # # # # a b 61. y x 1 62. y 3 x 1 œ %  œ  È È 63. y 16 x 64. y x œ %  œ  œ %  É ˆ ‰ È È x # # $ # " " # # 65. y 3x 27x 66. y œ "  œ "  œ "  œ "  a b ˆ ‰ $ $ # ) $ x x $ Section 1.2 Combining Functions; Shifting and Scaling Graphs 15 67. Let y x f x and let g x x , œ  #  " œ œ È a b a b "Î# h x x , i x x , and a b a b ˆ ‰ ˆ ‰ È œ  œ #  " " # # "Î# "Î# j x x f . The graph of a b a b ’ “ È ˆ ‰ œ  #  œ B " # "Î# h x is the graph of g x shifted left unit; the a b a b " # graph of i x is the graph of h x stretched a b a b vertically by a factor of ; and the graph of È # j x f x is the graph of i x reflected across a b a b a b œ the x-axis. 68. Let y f x Let g x x , œ "  œ Þ œ  È a b a b a b x # "Î# h x x , and i x x a b a b a b a b œ   # œ   # "Î# "Î# " # È f x The graph of g x is the œ "  œ Þ È a b a b x # graph of y x reflected across the x-axis. œ È The graph of h x is the graph of g x shifted a b a b right two units. And the graph of i x is the a b graph of h x compressed vertically by a factor a b of . È # 69. y f x x . Shift f x one unit right followed by a œ œ a b a b $ shift two units up to get g x x . a b a b œ  "  # 3 70. y x f x . œ "  B  # œ Ò  "  # Ó œ a b a b a b a b $ $ Let g x x , h x x , i x x , a b a b a b a b a b a b œ œ  " œ  "  # $ $ $ and j x x . The graph of h x is the a b a b a b a b œ Ò  "  # Ó $ graph of g x shifted right one unit; the graph of i x is a b a b the graph of h x shifted down two units; and the graph a b of f x is the graph of i x reflected across the x-axis. a b a b 71. Compress the graph of f x horizontally by a factor a b œ " x of 2 to get g x . Then shift g x vertically down 1 a b a b œ " # x unit to get h x . a b œ  " " # x

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all