Solution Manual for Trigonometry, 5th Edition
Page 1
S OLUTIONS M ANUAL E DGAR R EYES Southeastern Louisiana University T RIGONOMETRY F IFTH E DITION Mark Dugopolski Southeastern Louisiana University Page 2
Page 3
Table of Contents Chapter P .................................................................................................1 Chapter 1 ................................................................................................32 Chapter 2 ................................................................................................83 Chapter 3 ..............................................................................................137 Chapter 4 ..............................................................................................195 Chapter 5 ..............................................................................................245 Chapter 6 ..............................................................................................302 Page 4
P.1 The Cartesian Coordinate System 1 For Thought 1. False, the point (2 , − 3) is in Quadrant IV. 2. False, the point (4 , 0) does not belong to any quadrant. 3. False, since the distance is √ ( a − c ) 2 + ( b − d ) 2 . 4. False, since Ax + By = C is a linear equation. 5. True 6. False, since √ 7 2 + 9 2 = √ 130 ≈ 11 . 4 7. True 8. True 9. True 10. False, since the radius is 3. P.1 Exercises 1. ordered 2. Cartesian 3. x -axis 4. origin 5. Pythagorean theorem 6. circle 7. linear equation 8. y -intercept 9. (4 , 1), Quadrant I 10. ( − 3 , 2), Quadrant II 11. (1 , 0), x -axis 12. ( − 1 , − 5), Quadrant III 13. (5 , − 1), Quadrant IV 14. (0 , − 3), y -axis 15. ( − 4 , − 2), Quadrant III 16. ( − 2 , 0), x -axis 17. ( − 2 , 4), Quadrant II 18. (1 , 5), Quadrant I 19. c = √ ( √ 3) 2 + 1 2 = √ 4 = 2 20. Since a 2 + a 2 = √ 2 2 , we get 2 a 2 = 2 or a 2 = 1. Then a = 1. 21. Since b 2 + 2 2 = 3 2 , we get b 2 + 4 = 9 or b 2 = 5. Then b = √ 5. 22. Since b 2 + ( 1 2 ) 2 = 1 2 , we get b 2 + 1 4 = 1 or b 2 = 3 4 . Thus, b = √ 3 2 . 23. Since a 2 + 3 2 = 5 2 , we get a 2 + 9 = 25 or a 2 = 16. Then a = 4. 24. c = √ 3 2 + 2 2 = √ 9 + 4 = √ 13 25. √ 4 · 7 = 2 √ 7 26. √ 25 · 2 = 5 √ 2 27. √ 5 √ 9 = √ 5 3 28. √ 3 √ 16 = √ 3 4 29. √ 2 √ 3 · √ 3 √ 3 = √ 6 3 30. √ 3 √ 5 · √ 5 √ 5 = √ 15 5 31. 2 √ 3 √ 5 · √ 5 √ 5 = 2 √ 15 5 32. 5 √ 3 · √ 3 √ 3 = 5 √ 3 3 33. 1 √ 3 · √ 3 √ 3 = √ 3 3 34. 3 √ 2 · √ 2 √ 2 = 3 √ 2 2 35. √ 2 √ 3 · √ 3 √ 3 = √ 6 3 36. √ 5 √ 2 · √ 2 √ 2 = √ 10 2 37. Distance is √ (4 − 1) 2 + (7 − 3) 2 = √ 9 + 16 = √ 25 = 5, midpoint is (2 . 5 , 5) 38. Distance is √ 144 + 25 = 13, midpoint is (3 , 0 . 5) 39. Distance is √ ( − 1 − 1) 2 + ( − 2 − 0) 2 = √ 4 + 4 = 2 √ 2, midpoint is (0 , − 1) Page 5
2 Chapter P Algebraic Prerequisites 40. Distance is √ 4 + 4 = 2 √ 2, midpoint is (0 , 1) 41. Distance is √ √ √ √ ( √ 2 2 − 0 ) 2 + ( √ 2 2 − 0 ) 2 = √ 2 4 + 2 4 = √ 1 = 1, midpoint is ( √ 2 / 2 + 0 2 ,