Introduction to Quantum Mechanics, 3rd Edition Solution Manual

Introduction to Quantum Mechanics, 3rd Edition Solution Manual is your guide to textbook mastery, offering detailed solutions to every chapter's exercises.

Samuel White
Contributor
4.6
46
5 months ago
Preview (16 of 450 Pages)
100%
Purchase to unlock

Page 1

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 1 preview image

Loading page image...

Instructors’ Solution ManualIntroduction to Quantum Mechanics, 3rd ed.David Griffiths, Darrell SchroeterReed CollegeAugust 3, 2018SOLUTIONSGUIDE

Page 2

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 2 preview image

Loading page image...

Page 3

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 3 preview image

Loading page image...

2Contents1The Wave Function42The Time-Independent Schr¨odinger Equation163Formalism784Quantum Mechanics in Three Dimensions1095Identical Particles1686Symmetries and Conservation Laws1977Time-Independent Perturbation Theory2358The Variational Principle3019The WKB Approximation33310 Scattering35411 Quantum Dynamics37212 Afterword420ALinear Algebra427

Page 4

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 4 preview image

Loading page image...

4CHAPTER 1. THE WAVE FUNCTIONChapter 1The Wave FunctionProblem 1.1(a)j2= 212=441.j2=1Nj2N(j) =114[(142) + (152) + 3(162) + 2(222) + 2(242) + 5(252)]=114 (196 + 225 + 768 + 968 + 1152 + 3125) = 643414=459.571.(b)jj=j− 〈j141421 =7151521 =6161621 =5222221 = 1242421 = 3252521 = 4σ2=1N(∆j)2N(j) =114[(7)2+ (6)2+ (5)2·3 + (1)2·2 + (3)2·2 + (4)2·5]=114 (49 + 36 + 75 + 2 + 18 + 80) = 26014=18.571.σ=18.571 =4.309.(c)j2〉 − 〈j2= 459.571441 = 18.571.[Agrees with (b).]

Page 5

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 5 preview image

Loading page image...

CHAPTER 1. THE WAVE FUNCTION5Problem 1.2(a)x2=h0x212hx dx=12h(25x5/2)∣h0=h25.σ2=x2〉 − 〈x2=h25(h3)2=445h2σ=2h35 = 0.2981h.(b)P= 1x+x12hx dx= 112h(2x)x+x= 11h(x+x).x+≡ 〈x+σ= 0.3333h+ 0.2981h= 0.6315h;x≡ 〈x〉 −σ= 0.3333h0.2981h= 0.0352h.P= 10.6315 +0.0352 =0.393.Problem 1.3(a)1 =−∞Aeλ(xa)2dx.Letuxa,du=dx,u:−∞ → ∞.1 =A−∞eλu2du=AπλA=λπ.(b)x=A−∞xeλ(xa)2dx=A−∞(u+a)eλu2du=A[∫−∞ueλu2du+a−∞eλu2du]=A(0 +aπλ)=a.x2=A−∞x2eλ(xa)2dx=A{∫−∞u2eλu2du+ 2a−∞ueλu2du+a2−∞eλu2du}=A[12λπλ+ 0 +a2πλ]=a2+12λ.σ2=x2〉 − 〈x2=a2+12λa2=12λ;σ=12λ.

Page 6

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 6 preview image

Loading page image...

6CHAPTER 1. THE WAVE FUNCTION(c)Axal(x)Problem 1.4(a)1 =|A|2a2a0x2dx+|A|2(ba)2ba(bx)2dx=|A|2{1a2(x33)∣a0+1(ba)2((bx)33)∣ba}=|A|2[a3 +ba3]=|A|2b3A=3b.(b)xaAb^(c)Atx=a.(d)P=a0|Ψ|2dx=|A|2a2a0x2dx=|A|2a3 =ab.{P= 1ifb=a,XP= 1/2 ifb= 2a.X(e)x=x|Ψ|2dx=|A|2{1a2a0x3dx+1(ba)2bax(bx)2dx}= 3b{1a2(x44)∣a0+1(ba)2(b2x222b x33+x44)∣ba}=34b(ba)2[a2(ba)2+ 2b48b4/3 +b42a2b2+ 8a3b/3a4]=34b(ba)2(b43a2b2+ 23a3b)=14(ba)2(b33a2b+ 2a3) =2a+b4.

Page 7

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 7 preview image

Loading page image...

CHAPTER 1. THE WAVE FUNCTION7Problem 1.5(a)1 =|Ψ|2dx= 2|A|20e2λxdx= 2|A|2(e2λx2λ)∣0=|A|2λ;A=λ.(b)x=x|Ψ|2dx=|A|2−∞xe2λ|x|dx=0.[Odd integrand.]x2= 2|A|20x2e2λxdx= 2λ[2(2λ)3]=12λ2.(c)σ2=x2〉 − 〈x2=12λ2;σ=12λ.|Ψ(±σ)|2=|A|2e2λσ=λe2λ/2λ=λe2= 0.2431λ.|^|2hm<m+x.24hProbability outside:2σ|Ψ|2dx= 2|A|2σe2λxdx= 2λ(e2λx2λ)∣σ=e2λσ=e2= 0.2431.Problem 1.6For integration by parts, the differentiation has to be with respect to theintegrationvariable – in this case thedifferentiation is with respect tot, but the integration variable isx. It’s true that∂t(x|Ψ|2) =∂x∂t|Ψ|2+x ∂t|Ψ|2=x ∂t|Ψ|2,but this doesnotallow us to perform the integration:bax ∂t|Ψ|2dx=ba∂t(x|Ψ|2)dx6= (x|Ψ|2)ba.

Page 8

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 8 preview image

Loading page image...

8CHAPTER 1. THE WAVE FUNCTIONProblem 1.7From Eq. 1.33,dpdt=i∂t(ΨΨ∂x)dx. But, noting that2Ψ∂x∂t=2Ψ∂t∂xand using Eqs. 1.23-1.24:∂t(ΨΨ∂x)=Ψ∂tΨ∂x+ Ψ∂x(Ψ∂t)=[i2m2Ψ∂x2+iVΨ]Ψ∂x+ Ψ∂x[i2m2Ψ∂x2iVΨ]=i2m[Ψ3Ψ∂x32Ψ∂x2Ψ∂x]+i[VΨΨ∂xΨ∂x(VΨ)]The first term integrates to zero, using integration by parts twice, and the second term can be simplified toVΨΨ∂xΨVΨ∂xΨ∂V∂xΨ =−|Ψ|2∂V∂x.Sodpdt=i(i) ∫−|Ψ|2∂V∂x dx=〈−∂V∂x.QEDProblem 1.8Suppose Ψ satisfies the Schr¨odinger equationwithoutV0:iΨ∂t=22m2Ψ∂x2+VΨ. We want to find the solutionΨ0withV0:iΨ0∂t=22m2Ψ0∂x2+ (V+V00.Claim: Ψ0= ΨeiV0t/.Proof:iΨ0∂t=iΨ∂teiV0t/+iΨ(iV0)eiV0t/=[22m2Ψ∂x2+VΨ]eiV0t/+V0ΨeiV0t/=22m2Ψ0∂x2+ (V+V00.QEDThis hasnoeffect on the expectation value of a dynamical variable, since the extra phase factor, being inde-pendent ofx, cancels out in Eq. 1.36.Problem 1.9(a)1 = 2|A|20e2amx2/dx= 2|A|212π(2am/) =|A|2π2am;A=(2amπ)1/4.(b)Ψ∂t=iaΨ;Ψ∂x=2amxΨ;2Ψ∂x2=2am(Ψ +x Ψ∂x)=2am(12amx2)Ψ.Plug these into the Schr¨odinger equation,iΨ∂t=22m2Ψ∂x2+VΨ:VΨ =i(ia)Ψ +22m(2am) (12amx2)Ψ=[aa(12amx2)]Ψ = 2a2mx2Ψ,soV(x) = 2ma2x2.

Page 9

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 9 preview image

Loading page image...

CHAPTER 1. THE WAVE FUNCTION9(c)x=−∞x|Ψ|2dx=0.[Odd integrand.]x2= 2|A|20x2e2amx2/dx= 2|A|2122(2am/)π2am=4am .p=m dxdt=0.p2=Ψ(i∂x)2Ψdx=2Ψ2Ψ∂x2dx=2Ψ[2am(12amx2)Ψ]dx= 2am{∫|Ψ|2dx2amx2|Ψ|2dx}= 2am(12amx2)= 2am(12am4am)= 2am(12)=am.(d)σ2x=x2〉 − 〈x2=4am=σx=4am;σ2p=p2〉 − 〈p2=am=σp=am.σxσp=4amam=2. Thisis(just barely) consistent with the uncertainty principle.Problem 1.10From Math Tables:π= 3.141592653589793238462643· · ·(a)P(0) = 0P(1) = 2/25P(2) = 3/25P(3) = 5/25P(4) = 3/25P(5) = 3/25P(6) = 3/25P(7) = 1/25P(8) = 2/25P(9) = 3/25In general,P(j) =N(j)N.(b)Most probable:3.Median: 13 are4, 12 are5, so median is4.Average:j=125[0·0 + 1·2 + 2·3 + 3·5 + 4·3 + 5·3 + 6·3 + 7·1 + 8·2 + 9·3]=125[0 + 2 + 6 + 15 + 12 + 15 + 18 + 7 + 16 + 27] =11825=4.72.(c)j2=125[0 + 12·2 + 22·3 + 32·5 + 42·3 + 52·3 + 62·3 + 72·1 + 82·2 + 92·3]=125[0 + 2 + 12 + 45 + 48 + 75 + 108 + 49 + 128 + 243] =71025=28.4.σ2=j2〉 − 〈j2= 28.44.722= 28.422.2784 = 6.1216;σ=6.1216 =2.474.

Page 10

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 10 preview image

Loading page image...

10CHAPTER 1. THE WAVE FUNCTIONProblem 1.11(a)12mv2+V=Ev(x) =2m(EV(x)).(b)T=ba12m(E12kx2)dx=mkba1(2E/k)x2dx.Turning points:v= 0E=V=12kb2b=2E/k;a=b.T= 2mkb01b2x2dx= 2mksin1(xb) ∣b0= 2mksin1(1)= 2mk(π2)=πmk .ρ(x) =1πmk2m(E12kx21)=1πb2x2.baρ(x)dx= 2πb01b2x2dx= 2π(π2)= 1.Xρ(x)xb-b(c)x= 0.x2= 1πbbx2b2x2dx= 2πb0x2b2x2dx= 2π[x2b2x2+b22 sin1(xb)] ∣b0=b2πsin1(1) =b2ππ2 =b22 =Ek .σx=x2〉 − 〈x2=x2=b2 =Ek .Problem 1.12(a)ρ(p)dp=dtT=|dt/dp|dpTwheredtis now the time it spends with momentum in the rangedp(dtis intrinsically positive, butdp/dt=F=kxruns negative—hence the absolute value). Nowp22m+ 12kx2=Ex=±2k(Ep22m),

Page 11

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 11 preview image

Loading page image...

CHAPTER 1. THE WAVE FUNCTION11soρ(p) =1πmkk2k(Ep22m)=1π2mEp2=1πc2p2,wherec2mE.This is the same asρ(x) (Problem 1.11(b)), withcin place ofb(and, of course,pinplace ofx).(b)From Problem 1.11(c),p= 0,p2=c22, σp=c2 =mE .(c)σxσp=EkmE=mk E=Eω .IfE12ω, thenσxσp12, which is precisely the Heisenberguncertainty principle!Problem 1.13x@t_D:=Cos@tDsnapshots=Table@x@pRandomReal@jDD,8j, 10 000<D8-0.977661, 0.371147,-0.0389023,-0.0257086,-0.968682,-0.681951,-0.874704,Ü9987á, 0.584236,-0.974667, 0.10798, 0.996311,-0.767106, 0.926913<Histogram@snapshots, 100, "PDF", PlotRangeÆ80, 2<D-0.50.00.51.00.51.01.52.0r@x_D:=1p1-x2Plot@r@xD,8x,-1, 1<, PlotRange->80, 2<Dx@t_D:=Cos@tDsnapshots=Table@x@pRandomReal@jDD,8j, 10 000<D8-0.977661, 0.371147,-0.0389023,-0.0257086,-0.968682,-0.681951,-0.874704,Ü9987á, 0.584236,-0.974667, 0.10798, 0.996311,-0.767106, 0.926913<Histogram@snapshots, 100, "PDF", PlotRangeÆ80, 2<D-0.50.00.51.00.51.01.52.0r@x_D:=1p1-x2Plot@r@xD,8x,-1, 1<, PlotRange->80, 2<D1.52.0

Page 12

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 12 preview image

Loading page image...

12CHAPTER 1. THE WAVE FUNCTION-0.50.00.51.00.51.01.5r@x_D:=1p1-x2Plot@r@xD,8x,-1, 1<, PlotRange->80, 2<D-1.0-0.50.51.00.51.01.52.0Show@Histogram@snapshots, 100, "PDF", PlotRangeÆ80, 2<D,Plot@r@xD,8x,-1, 1<, PlotRange->80, 2<DD-0.50.00.51.00.51.01.52.021p13.nbProblem 1.14(a)Pab(t) =ba|Ψ(x, t)|2dx,sodPabdt=ba∂t|Ψ|2dx.But (Eq. 1.25):|Ψ|2∂t=∂x[i2m(ΨΨ∂xΨ∂xΨ)]=∂x J(x, t).dPabdt=ba∂x J(x, t)dx=[J(x, t)]|ba=J(a, t)J(b, t).QEDProbability is dimensionless, soJhas the dimensions 1/time, and unitsseconds1.(b)Here Ψ(x, t) =f(x)eiat, wheref(x)Aeamx2/, so ΨΨ∂x=f eiat dfdxeiat=fdfdx,and ΨΨ∂x=fdfdxtoo, soJ(x, t) = 0.

Page 13

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 13 preview image

Loading page image...

CHAPTER 1. THE WAVE FUNCTION13Problem 1.15Use Eqs. [1.23] and [1.24], and integration by parts:ddt−∞Ψ1Ψ2dx=−∞∂t1Ψ2)dx=−∞(Ψ1∂tΨ2+ Ψ1Ψ2∂t)dx=−∞[(i2m2Ψ1∂x2+iVΨ1)Ψ2+ Ψ1(i2m2Ψ2∂x2iVΨ2)]dx=i2m−∞(2Ψ1∂x2Ψ2Ψ12Ψ2∂x2)dx=i2m[Ψ1∂xΨ2−∞−∞Ψ1∂xΨ2∂xdxΨ1Ψ2∂x−∞+−∞Ψ1∂xΨ2∂xdx]= 0.QEDProblem 1.16(a)1 =|A|2aa(a2x2)2dx= 2|A|2a0(a42a2x2+x4)dx= 2|A|2[a4x2a2x33+x55]∣a0= 2|A|2a5(123 + 15)= 1615a5|A|2,soA=1516a5.(b)x=aax|Ψ|2dx=0.(Odd integrand.)(c)p=i A2aa(a2x2)ddx(a2x2)︷︷2xdx=0.(Odd integrand.)Since we only knowxatt= 0 we cannot calculatedx/dtdirectly.(d)x2=A2aax2(a2x2)2dx= 2A2a0(a4x22a2x4+x6)dx= 21516a5[a4x332a2x55+x77]∣a0=158a5(a7)(1325 + 17)=15a28(3542 + 153·5·7)=a28·87 =a27.

Page 14

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 14 preview image

Loading page image...

14CHAPTER 1. THE WAVE FUNCTION(e)p2=A22aa(a2x2)d2dx2(a2x2)︷︷2dx= 2A222a0(a2x2)dx= 4·1516a52(a2xx33)∣a0= 1524a5(a3a33)= 1524a2·23 =522a2.(f )σx=x2〉 − 〈x2=17a2=a7.(g)σp=p2〉 − 〈p2=522a2=52a .(h)σxσp=a7·52a=514=1072>2.XProblem 1.17(a)Eq. 1.24 now readsΨ∂t=i2m2Ψ∂x2+iVΨ, and Eq. 1.25 picks up an extra term:∂t|Ψ|2=· · ·+i|Ψ|2(VV) =· · ·+i|Ψ|2(V0+iΓV0+iΓ) =· · · −|Ψ|2,and Eq. 1.27 becomesdPdt=−∞|Ψ|2dx=P.QED(b)dPP=dt=lnP=t+ constant =P(t) =P(0)et/,soτ=.Problem 1.18h3mkBT > dT <h23mkBd2.(a)Electrons (m= 9.1×1031kg):T <(6.6×1034)23(9.1×1031)(1.4×1023)(3×1010)2=1.3×105K.Silicon nuclei (m= 28mp= 28(1.7×1027) = 4.8×1026kg):T <(6.6×1034)23(4.8×1026)(1.4×1023)(3×1010)2=2.4 K.

Page 15

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 15 preview image

Loading page image...

CHAPTER 1. THE WAVE FUNCTION15(b)P V=N kBT; volume occupied by one molecule (N= 1, V=d3)d= (kBT /P)1/3.T <h23mkB(PkBT)2/3T5/3< h23mP2/3k5/3BT <1kB(h23m)3/5P2/5.For helium (m= 4mp= 6.8×1027kg) at 1 atm = 1.0×105N/m2:T <1(1.4×1023)((6.6×1034)23(6.8×1027))3/5(1.0×105)2/5=2.8 K.For atomic hydrogen (m=mp= 1.7×1027kg) withd= 0.01 m:T <(6.6×1034)23(1.7×1027)(1.4×1023)(102)2=6.2×1014K.At 3 K it is definitely in the classical regime.

Page 16

Introduction to Quantum Mechanics, 3rd Edition Solution Manual - Page 16 preview image

Loading page image...

16CHAPTER 2. THE TIME-INDEPENDENT SCHR ¨ODINGER EQUATIONChapter 2The Time-Independent Schr¨odingerEquationProblem 2.1(a)Ψ(x, t) =ψ(x)ei(E0+iΓ)t/=ψ(x)eΓt/eiE0t/=⇒ |Ψ|2=|ψ|2et/.−∞|Ψ(x, t)|2dx=et/−∞|ψ|2dx.The second term is independent oft, so if the product is to be 1 for all time, the first term (et/) mustalso be constant, and hence Γ = 0.QED(b)Ifψsatisfies Eq. 2.5,22md2ψdx2+V ψ=, then (taking the complex conjugate and noting thatVandEare real):22md2ψdx2+V ψ=, soψalsosatisfies Eq. 2.5. Now, ifψ1andψ2satisfy Eq. 2.5, sotoo does any linear combination of them (ψ3c1ψ1+c2ψ2):22md2ψ3dx2+V ψ3=22m(c1d2ψ1dx2+c2d2ψ2dx2)+V(c1ψ1+c2ψ2)=c1[22md2ψ1dx2+V ψ1]+c2[22md2ψ2dx2+V ψ2]=c1(1) +c2(2) =E(c1ψ1+c2ψ2) =3.Thus, (ψ+ψ) andi(ψψ) – both of which arereal– satisfy Eq. 2.5.Conclusion:From any complexsolution, we can always construct tworealsolutions (of course, ifψis already real, the second one will bezero). In particular, sinceψ=12[(ψ+ψ)i(i(ψψ))], ψcan be expressed as a linear combination oftwo real solutions.QED(c)Ifψ(x) satisfies Eq. 2.5, then, changing variablesx→ −xand noting thatd2/d(x)2=d2/dx2,22md2ψ(x)dx2+V(x)ψ(x) =(x);so ifV(x) =V(x) thenψ(x)alsosatisfies Eq. 2.5. It follows thatψ+(x)ψ(x) +ψ(x) (which iseven:ψ+(x) =ψ+(x)) andψ(x)ψ(x)ψ(x) (which isodd:ψ(x) =ψ(x)) both satisfy Eq.2.5. Butψ(x) =12(ψ+(x) +ψ(x)), so any solution can be expressed as a linear combination of even andodd solutions.QED
Preview Mode

This document has 450 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Subject
Physics

Related Documents

View all