Solution Manual For Introduction To Electrodynamics, 4th Edition

Get the textbook answers you need with Solution Manual For Introduction To Electrodynamics, 4th Edition, an essential guide to solving textbook problems.

Gabriel Adams
Contributor
4.2
43
5 months ago
Preview (16 of 295 Pages)
100%
Purchase to unlock

Page 1

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 1 preview image

Loading page image...

Solution ManualIntroduction to ElectrodynamicsFourth EditionDavid J. Griffiths2012

Page 2

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 2 preview image

Loading page image...

Page 3

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 3 preview image

Loading page image...

2Contents1Vector Analysis42Electrostatics263Potential534Electric Fields in Matter925Magnetostatics1106Magnetic Fields in Matter1337Electrodynamics1458Conservation Laws1689Electromagnetic Waves18510 Potentials and Fields21011 Radiation23112 Electrodynamics and Relativity261c

Page 4

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 4 preview image

Loading page image...

4CHAPTER 1. VECTOR ANALYSISChapter 1Vector AnalysisProblem 1.1CHAPTER 1. VECTOR ANALYSIS3Chapter 1Vector AnalysisProblem 1.1!"#$ABCB+C︷︷|B|cosθ1︷︷|C|cosθ2}|B|sinθ1}|C|sinθ2θ1θ2θ3(a) From the diagram,|B+C|cosθ3=|B|cosθ1+|C|cosθ2.|A||B+C|cosθ3=|A||B|cosθ1+|A||C|cosθ2.So:A·(B+C) =A·B+A·C. (Dot product is distributive)Similarly:|B+C|sinθ3=|B|sinθ1+|C|sinθ2. Mulitply by|A|ˆn.|A||B+C|sinθ3ˆn=|A||B|sinθ1ˆn+|A||C|sinθ2ˆn.Ifˆnis the unit vector pointing out of the page, it follows thatA×(B+C) = (A×B) + (A×C). (Cross product is distributive)(b) For the general case, see G. E. Hay’sVector and Tensor Analysis, Chapter 1, Section 7 (dot product) andSection 8 (cross product)Problem 1.2!A=B%C&B×C'A×(B×C)The triple cross-product isnotin general associative.For example,supposeA=BandCis perpendicular toA, as in the diagram.Then (B×C) points out-of-the-page, andA×(B×C) pointsdown,and has magnitudeABC.But (A×B) = 0, so (A×B)×C= 0!=A×(B×C).Problem 1.3!y%z(x!B"AθA= +1ˆx+ 1ˆy1ˆz;A=3;B= 1ˆx+ 1ˆy+ 1ˆz;A·B= +1 + 11 = 1 =ABcosθ=33 cosθcosθ.θ= cos1(13)70.5288Problem 1.4The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,we might pick the base (A) and the left side (B):c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material isprotected under all copyright laws as they currently exist.(a) From the diagram,|B+C|cosθ3=|B|cosθ1+|C|cosθ2. Multiply by|A|.|A||B+C|cosθ3=|A||B|cosθ1+|A||C|cosθ2.So:A·(B+C) =A·B+A·C. (Dot product is distributive)Similarly:|B+C|sinθ3=|B|sinθ1+|C|sinθ2. Mulitply by|A|ˆn.|A||B+C|sinθ3ˆn=|A||B|sinθ1ˆn+|A||C|sinθ2ˆn.Ifˆnis the unit vector pointing out of the page, it follows thatA×(B+C) = (A×B) + (A×C). (Cross product is distributive)(b) For the general case, see G. E. Hay’sVector and Tensor Analysis, Chapter 1, Section 7 (dot product) andSection 8 (cross product)Problem 1.2CHAPTER 1. VECTOR ANALYSIS3Chapter 1Vector AnalysisProblem 1.1!"#$ABCB+C︷︷|B|cosθ1︷︷|C|cosθ2}|B|sinθ1}|C|sinθ2θ1θ2θ3(a) From the diagram,|B+C|cosθ3=|B|cosθ1+|C|cosθ2. Multiply by|A|.|A||B+C|cosθ3=|A||B|cosθ1+|A||C|cosθ2.So:A·(B+C) =A·B+A·C. (Dot product is distributive)Similarly:|B+C|sinθ3=|B|sinθ1+|C|sinθ2. Mulitply by|A|ˆn.|A||B+C|sinθ3ˆn=|A||B|sinθ1ˆn+|A||C|sinθ2ˆn.Ifˆnis the unit vector pointing out of the page, it follows thatA×(B+C) = (A×B) + (A×C). (Cross product is distributive)(b) For the general case, see G. E. Hay’sVector and Tensor Analysis, Chapter 1, Section 7 (dot product) andSection 8 (cross product)Problem 1.2!A=B%C&B×C'A×(B×C)The triple cross-product isnotin general associative.For example,supposeA=BandCis perpendicular toA, as in the diagram.Then (B×C) points out-of-the-page, andA×(B×C) pointsdown,and has magnitudeABC.But (A×B) = 0, so (A×B)×C= 0!=A×(B×C).Problem 1.3!y%z(x!B"AθA= +1ˆx+ 1ˆy1ˆz;A=3;B= 1ˆx+ 1ˆy+ 1ˆz;B=3.A·B= +1 + 11 = 1 =ABcosθ=33 cosθcosθ=13.θ= cos1(13)70.5288Problem 1.4The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,we might pick the base (A) and the left side (B):A=1ˆx+ 2y+0z;=1x+0y+3z.c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material isprotected under all copyright laws as they currently exist.The triple cross-product isnotin general associative.For example,supposeA=BandCis perpendicular toA, as in the diagram.Then (B×C) points out-of-the-page, andA×(B×C) pointsdown,and has magnitudeABC.But (A×B) =0, so (A×B)×C=06=A×(B×C).Problem 1.3CHAPTER 1. VECTOR ANALYSIS3Chapter 1Vector AnalysisProblem 1.1!"#$ABCB+C︷︷|B|cosθ1︷︷|C|cosθ2}|B|sin}|C|sinθ1θ2θ3(a) From the diagram,|B+C|cosθ3=|B|cosθ1+|C|cosθ2.|A||B+C|cosθ3=|A||B|cosθ1+|A||C|cosθ2.So:A·(B+C) =A·B+A·C. (Dot product is distributive)Similarly:|B+C|sinθ3=|B|sinθ1+|C|sinθ2. Mulitply by|A|ˆn.|A||B+C|sinθ3ˆn=|A||B|sinθ1ˆn+|A||C|sinθ2ˆn.Ifˆnis the unit vector pointing out of the page, it follows thatA×(B+C) = (A×B) + (A×C). (Cross product is distributive)(b) For the general case, see G. E. Hay’sVector and Tensor Analysis, Chapter 1, Section 7 (dot product)Section 8 (cross product)Problem 1.2!A=B%C&B×C'A×(B×C)The triple cross-product isnotin general associative.For example,supposeA=BandCis perpendicular toA, as in the diagram.Then (B×C) points out-of-the-page, andA×(B×C) pointsdown,and has magnitudeABC.But (A×B) = 0, so (A×B)×C= 0!=A×(B×C).Problem 1.3!y%z(x!B"AθA= +1ˆx+ 1ˆy1ˆz;A=3;B= 1ˆx+ 1ˆy+ 1ˆz;A·B= +1 + 11 = 1 =ABcosθ=33 cosθcosθ.θ= cos1(13)70.5288Problem 1.4The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For examwe might pick the base (A) and the left side (B):c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material isprotected under all copyright laws as they currently exist.A= +1ˆx+ 1ˆy1ˆz;A=3;B= 1ˆx+ 1ˆy+ 1ˆz;B=3.A·B= +1 + 11 = 1 =ABcosθ=33 cosθcosθ=13.θ= cos1(13)70.5288Problem 1.4The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,we might pick the base (A) and the left side (B):A=1ˆˆˆˆˆˆ

Page 5

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 5 preview image

Loading page image...

CHAPTER 1. VECTOR ANALYSIS5A×B=ˆxˆy ˆz1 2 01 0 3= 6ˆx+ 3ˆy+ 2ˆz.This has the rightdirection, but the wrongmagnitude. To make aunitvector out of it, simply divide by itslength:|A×B|=36 + 9 + 4 = 7.ˆn=A×B|A×B|=67ˆx+37ˆy+27ˆz.Problem 1.5A×(B×C) =ˆxˆyˆzAxAyAz(ByCzBzCy) (BzCxBxCz) (BxCyByCx)=ˆx[Ay(BxCyByCx)Az(BzCxBxCz)] +ˆy() +ˆz()(I’ll just check the x-component; the others go the same way)=ˆx(AyBxCyAyByCxAzBzCx+AzBxCz) +ˆy() +ˆz().B(A·C)C(A·B) = [Bx(AxCx+AyCy+AzCz)Cx(AxBx+AyBy+AzBz)]ˆx+ ()ˆy+ ()ˆz=ˆx(AyBxCy+AzBxCzAyByCxAzBzCx) +ˆy() +ˆz(). They agree.Problem 1.6A×(B×C)+B×(C×A)+C×(A×B) =B(A·C)C(A·B)+C(A·B)A(C·B)+A(B·C)B(C·A) =0.So:A×(B×C)(A×B)×C=B×(C×A) =A(B·C)C(A·B).If this is zero, then eitherAis parallel toC(including the case in which they point inoppositedirections, orone is zero), or elseB·C=B·A= 0, in which caseBis perpendicular toAandC(including the caseB=0.)Conclusion:A×(B×C) = (A×B)×C⇐⇒eitherAis parallel toC, orBis perpendicular toAandC.Problem 1.7r= (4ˆx+ 6ˆy+ 8ˆz)(2ˆx+ 8ˆy+ 7ˆz) =2ˆx2ˆy+ˆzr=4 + 4 + 1 =3ˆr=rr=23ˆx23ˆy+13ˆzProblem 1.8(a) ¯Ay¯By+ ¯Az¯Bz= (cosφAy+ sinφAz)(cosφBy+ sinφBz) + (sinφAy+ cosφAz)(sinφBy+ cosφBz)= cos2φAyBy+ sinφcosφ(AyBz+AzBy) + sin2φAzBz+ sin2φAyBysinφcosφ(AyBz+AzBy) +cos2φAzBz= (cos2φ+ sin2φ)AyBy+ (sin2φ+ cos2φ)AzBz=AyBy+AzBz.X(b) (Ax)2+ (Ay)2+ (Az)2= Σ3i=1AiAi= Σ3i=1(Σ3j=1RijAj) (Σ3k=1RikAk)= Σj,kiRijRik)AjAk.This equalsA2x+A2y+A2zprovidedΣ3i=1RijRik={1if j=k0if j6=k}Moreover, ifRis to preserve lengths forallvectorsA, then this condition is not onlysufficientbut alsonecessary. For supposeA= (1,0,0). Then Σj,kiRijRik)AjAk= ΣiRi1Ri1, and this must equal 1 (since wewantA2x+A2y+A2z= 1). Likewise, Σ3i=1Ri2Ri2= Σ3i=1Ri3Ri3= 1. To check the casej6=k, chooseA= (1,1,0).Then we want 2 = Σj,kiRijRik)AjAk= ΣiRi1Ri1+ ΣiRi2Ri2+ ΣiRi1Ri2+ ΣiRi2Ri1. But we alreadyknow that the first two sums are both 1; the third and fourth areequal, so ΣiRi1Ri2= ΣiRi2Ri1= 0, and soon for other unequal combinations ofj,k.XIn matrix notation:˜RR= 1, where ˜Ris thetransposeofR.c

Page 6

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 6 preview image

Loading page image...

6CHAPTER 1. VECTOR ANALYSISProblem 1.9CHAPTER 1. VECTOR ANALYSIS5!x"y#z$%Looking down the axis:"y&x'z"z&y'x()*c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights resprotected unLooking down the axis:CHAPTER 1. VECTOR ANALYSIS5!x"y#z$%Looking down the axis:"y&x'z"z&y'x()*c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material isprotected under all copyright laws as they currently exist.A 120rotation carries thezaxis into they(=z) axis,yintox(=y), andxintoz(=x). SoAx=Az,Ay=Ax,Az=Ay.R=0 0 11 0 00 1 0Problem 1.10(a)No change.(Ax=Ax,Ay=Ay,Az=Az)(b)A−→ −A,in the sense (Ax=Ax,Ay=Ay,Az=Az)(c) (A×B)−→(A)×(B) = (A×B).That is, ifC=A×B,C−→C.Nominus sign, in contrast tobehavior of an “ordinary” vector, as given by (b). IfAandBarepseudovectors, then (A×B)−→(A)×(B) =(A×B). So the cross-product of two pseudovectors is again apseudovector. In the cross-product of a vectorand a pseudovector, one changes sign, the other doesn’t, and therefore the cross-product is itself avector.Angular momentum(L=r×p) andtorque(N=r×F) are pseudovectors.(d)A·(B×C)−→(A)·((B)×(C)) =A·(B×C). So, ifa=A·(B×C), thena−→ −a;a pseudoscalarchanges signunder inversion of coordinates.Problem 1.11(a)f= 2xˆx+ 3y2ˆy+ 4z3ˆz(b)f= 2xy3z4ˆx+ 3x2y2z4ˆy+ 4x2y3z3ˆz(c)f=exsinylnzˆx+excosylnzˆy+exsiny(1/z)ˆzProblem 1.12(a)h= 10[(2y6x18)ˆx+ (2x8y+ 28)ˆy].h= 0 at summit, so2y6x18 = 02x8y+ 28 = 0 =6x24y+ 84 = 0}2y1824y+ 84 = 0.22y= 66 =y= 3 =2x24 + 28 = 0 =x=2.Top is3 miles north, 2 miles west, of South Hadley.(b) Putting inx=2,y= 3:h= 10(121236 + 36 + 84 + 12) =720 ft.(c) Putting inx= 1,y= 1:h= 10[(2618)ˆx+ (28 + 28)ˆy] = 10(22ˆx+ 22ˆy) = 220(ˆx+ˆy).|h|= 2202311 ft/mile;direction:northwest.c

Page 7

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 7 preview image

Loading page image...

CHAPTER 1. VECTOR ANALYSIS7Problem 1.13r= (xx)ˆx+ (yy)ˆy+ (zz)ˆz;r=(xx)2+ (yy)2+ (zz)2.(a)(r2) =∂x[(xx)2+(yy)2+(zz)2]ˆx+∂y()ˆy+∂z()ˆz= 2(xx)ˆx+2(yy)ˆy+2(zz)ˆz= 2r.(b)(1r) =∂x[(xx)2+ (yy)2+ (zz)2]12ˆx+∂y()12ˆy+∂z()12ˆz=12()322(xx)ˆx12()322(yy)ˆy12()322(zz)ˆz=()32[(xx)ˆx+ (yy)ˆy+ (zz)ˆz] =(1/r3)r=(1/r2) ˆr.(c)∂x(rn) =nrn1r∂x=nrn1(121r2rx) =nrn1ˆrx, so(rn) =nrn1ˆrProblem 1.14y= +ycosφ+zsinφ; multiply by sinφ:ysinφ= +ysinφcosφ+zsin2φ.z=ysinφ+zcosφ; multiply by cosφ:zcosφ=ysinφcosφ+zcos2φ.Add:ysinφ+zcosφ=z(sin2φ+ cos2φ) =z. Likewise,ycosφzsinφ=y.So∂y∂y= cosφ;∂y∂z=sinφ;∂z∂y= sinφ;∂z∂z= cosφ. Therefore(f)y=∂f∂y=∂f∂y∂y∂y+∂f∂z∂z∂y= + cosφ(f)y+ sinφ(f)z(f)z=∂f∂z=∂f∂y∂y∂z+∂f∂z∂z∂z=sinφ(f)y+ cosφ(f)z}Softransforms as a vector.qedProblem 1.15(a)∇·va=∂x(x2) +∂y(3xz2) +∂z(2xz) = 2x+ 02x= 0.(b)∇·vb=∂x(xy) +∂y(2yz) +∂z(3xz) =y+ 2z+ 3x.(c)∇·vc=∂x(y2) +∂y(2xy+z2) +∂z(2yz) = 0 + (2x) + (2y) = 2(x+y)Problem 1.16∇·v=∂x(xr3) +∂y(yr3) +∂z(zr3) =∂x[x(x2+y2+z2)32]+∂y[y(x2+y2+z2)32]+∂z[z(x2+y2+z2)32]= ()32+x(3/2)()522x+ ()32+y(3/2)()522y+ ()32+z(3/2)()522z= 3r33r5(x2+y2+z2) = 3r33r3= 0.This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from theorigin.How, then, can∇·v= 0?The answer is that∇·v= 0 everywhereexceptat the origin, but at theorigin our calculation is no good, sincer= 0, and the expression forvblows up. In fact,∇·visinfiniteatthat one point, and zero elsewhere, as we shall see in Sect. 1.5.Problem 1.17vy= cosφ vy+ sinφ vz;vz=sinφ vy+ cosφ vz.∂vy∂y=∂vy∂ycosφ+∂vz∂ysinφ=(∂vy∂y∂y∂y+∂vy∂z∂z∂y)cosφ+(∂vz∂y∂y∂y+∂vz∂z∂z∂y)sinφ.Use result in Prob. 1.14:=(∂vy∂ycosφ+∂vy∂zsinφ)cosφ+(∂vz∂ycosφ+∂vz∂zsinφ)sinφ.∂vz∂z=∂vy∂zsinφ+∂vz∂zcosφ=(∂vy∂y∂y∂z+∂vy∂z∂z∂z)sinφ+(∂vz∂y∂y∂z+∂vz∂z∂z∂z)cosφ=(∂vy∂ysinφ+∂vy∂zcosφ)sinφ+(∂vz∂ysinφ+∂vz∂zcosφ)cosφ. Soc

Page 8

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 8 preview image

Loading page image...

8CHAPTER 1. VECTOR ANALYSIS∂vy∂y+∂vz∂z=∂vy∂ycos2φ+∂vy∂zsinφcosφ+∂vz∂ysinφcosφ+∂vz∂zsin2φ+∂vy∂ysin2φ∂vy∂zsinφcosφ∂vz∂ysinφcosφ+∂vz∂zcos2φ=∂vy∂y(cos2φ+ sin2φ)+∂vz∂z(sin2φ+ cos2φ)=∂vy∂y+∂vz∂z.XProblem 1.18(a)∇×va=ˆxˆyˆz∂x∂y∂zx23xz22xz=ˆx(06xz) +ˆy(0 + 2z) +ˆz(3z20) =6xzˆx+ 2zˆy+ 3z2ˆz.(b)∇×vb=ˆxˆyˆz∂x∂y∂zxy2yz3xz=ˆx(02y) +ˆy(03z) +ˆz(0x) =2yˆx3zˆyxˆz.(c)∇×vc=ˆxˆyˆz∂x∂y∂zy2(2xy+z2) 2yz=ˆx(2z2z) +ˆy(00) +ˆz(2y2y) =0.Problem 1.19AxyzvvvvBAs we go from pointAto pointB(9 o’clock to 10 o’clock),xincreases,yincreases,vxincreases, andvydecreases, so∂vx/∂y >0, while∂vy/∂y <0.On the circle,vz= 0, and there is nodependence onz, so Eq. 1.41 says×v=ˆz(∂vy∂x∂vx∂y)points in thenegativezdirection(into the page), as the righthand rule would suggest.(Pick any other nearby points on thecircle and you will come to the same conclusion.) [I’m sorry, but Icannot remember who suggested this cute illustration.]Problem 1.20v=yˆx+xˆy; orv=yzˆx+xzˆy+xyˆz; orv= (3x2zz3)ˆx+ 3ˆy+ (x33xz2)ˆz;orv= (sinx)(coshy)ˆx(cosx)(sinhy)ˆy; etc.Problem 1.21(i)(f g) =(f g)∂xˆx+(f g)∂yˆy+(f g)∂zˆz=(f∂g∂x+g∂f∂x)ˆx+(f∂g∂y+g∂f∂y)ˆy+(f∂g∂z+g∂f∂z)ˆz=f(∂g∂xˆx+∂g∂yˆy+∂g∂zˆz)+g(∂f∂xˆx+∂f∂yˆy+∂f∂zˆz)=f(g) +g(f).qed(iv)∇·(A×B) =∂x(AyBzAzBy) +∂y(AzBxAxBz) +∂z(AxByAyBx)=Ay ∂Bz∂x+Bz ∂Ay∂xAz ∂By∂xBy ∂Az∂x+Az ∂Bx∂y+Bx ∂Az∂yAx ∂Bz∂yBz ∂Ax∂y+Ax ∂By∂z+By ∂Ax∂zAy ∂Bx∂zBx ∂Ay∂z=Bx(∂Az∂y∂Ay∂z)+By(∂Ax∂z∂Az∂x)+Bz(∂Ay∂x∂Ax∂y)Ax(∂Bz∂y∂By∂z)Ay(∂Bx∂z∂Bz∂x)Az(∂By∂x∂Bx∂y)=B·(∇×A)A·(∇×B).qed(v)∇×(fA) =((f Az)∂y(f Ay)∂z)ˆx+((f Ax)∂z(f Az)∂x)ˆy+((f Ay)∂x(f Ax)∂y)ˆzc

Page 9

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 9 preview image

Loading page image...

CHAPTER 1. VECTOR ANALYSIS9=(f∂Az∂y+Az ∂f∂yf∂Ay∂zAy ∂f∂z)ˆx+(f∂Ax∂z+Ax ∂f∂zf∂Az∂xAz ∂f∂x)ˆy+(f∂Ay∂x+Ay ∂f∂xf∂Ax∂yAx ∂f∂y)ˆz=f[(∂Az∂y∂Ay∂z)ˆx+(∂Ax∂z∂Az∂x)ˆy+(∂Ay∂x∂Ax∂y)ˆz][(Ay ∂f∂zAz ∂f∂y)ˆx+(Az ∂f∂xAx ∂f∂z)ˆy+(Ax ∂f∂yAy ∂f∂x)ˆz]=f(∇×A)A×(f).qedProblem 1.22(a) (A·)B=(Ax ∂Bx∂x+Ay ∂Bx∂y+Az ∂Bx∂z)ˆx+(Ax ∂By∂x+Ay ∂By∂y+Az ∂By∂z)ˆy+(Ax ∂Bz∂x+Ay ∂Bz∂y+Az ∂Bz∂z)ˆz.(b)ˆr=rr=xˆx+yˆy+zˆzx2+y2+z2. Let’s just do thexcomponent.[(ˆr·)ˆr]x=1(x∂x+y∂y+z∂z)xx2+y2+z2=1r{x[1+x(12)1()32x]+yx[121()32y]+zx[121()32z]}=1r{xr1r3(x3+xy2+xz2)}=1r{xrxr3(x2+y2+z2)}=1r(xrxr)= 0.Same goes for the other components. Hence:(ˆr·)ˆr=0.(c) (va·)vb=(x2∂x+ 3xz2∂y2xz∂z)(xyˆx+ 2yzˆy+ 3xzˆz)=x2(yˆx+ 0ˆy+ 3zˆz) + 3xz2(xˆx+ 2zˆy+ 0ˆz)2xz(0ˆx+ 2yˆy+ 3xˆz)=(x2y+ 3x2z2)ˆx+(6xz34xyz)ˆy+(3x2z6x2z)ˆz=x2(y+ 3z2)ˆx+ 2xz(3z22y)ˆy3x2zˆzProblem 1.23(ii) [(A·B)]x=∂x(AxBx+AyBy+AzBz) =∂Ax∂xBx+Ax ∂Bx∂x+∂Ay∂xBy+Ay ∂By∂x+∂Az∂xBz+Az ∂Bz∂x[A×(∇×B)]x=Ay(∇×B)zAz(∇×B)y=Ay(∂By∂x∂Bx∂y)Az(∂Bx∂z∂Bz∂x)[B×(∇×A)]x=By(∂Ay∂x∂Ax∂y)Bz(∂Ax∂z∂Az∂x)[(A·∇)B]x=(Ax ∂x+Ay ∂y+Az ∂z)Bx=Ax ∂Bx∂x+Ay ∂Bx∂y+Az ∂Bx∂z[(B·∇)A]x=Bx ∂Ax∂x+By ∂Ax∂y+Bz ∂Ax∂zSo [A×(∇×B) +B×(∇×A) + (A·∇)B+ (B·∇)A]x=Ay ∂By∂xAy ∂Bx∂yAz ∂Bx∂z+Az ∂Bz∂x+By ∂Ay∂xBy ∂Ax∂yBz ∂Ax∂z+Bz ∂Az∂x+Ax ∂Bx∂x+Ay ∂Bx∂y+Az ∂Bx∂z+Bx ∂Ax∂x+By ∂Ax∂y+Bz ∂Ax∂z=Bx ∂Ax∂x+Ax ∂Bx∂x+By(∂Ay∂x∂Ax∂y/+∂Ax∂y/)+Ay(∂By∂x∂Bx∂y/+∂Bx∂y/)+Bz(∂Ax∂z/+∂Az∂x+∂Ax∂z/)+Az(∂Bx∂z/+∂Bz∂x+∂Bx∂z/)= [(A·B)]x(same foryandz)(vi) [∇×(A×B)]x=∂y(A×B)z∂z(A×B)y=∂y(AxByAyBx)∂z(AzBxAxBz)=∂Ax∂yBy+Ax ∂By∂y∂Ay∂yBxAy ∂Bx∂y∂Az∂zBxAz ∂Bx∂z+∂Ax∂zBz+Ax ∂Bz∂z[(B·∇)A(A·∇)B+A(∇·B)B(∇·A)]x=Bx ∂Ax∂x+By ∂Ax∂y+Bz ∂Ax∂zAx ∂Bx∂xAy ∂Bx∂yAz ∂Bx∂z+Ax(∂Bx∂x+∂By∂y+∂Bz∂z)Bx(∂Ax∂x+∂Ay∂y+∂Az∂z)c

Page 10

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 10 preview image

Loading page image...

10CHAPTER 1. VECTOR ANALYSIS=By ∂Ax∂y+Ax(∂Bx∂x/+∂Bx∂x/+∂By∂y+∂Bz∂z)+Bx(∂Ax∂x/∂Ax∂x/∂Ay∂y∂Az∂z)+Ay(∂Bx∂y)+Az(∂Bx∂z)+Bz(∂Ax∂z)= [∇×(A×B)]x(same foryandz)Problem 1.24(f /g) =∂x(f /g)ˆx+∂y(f /g)ˆy+∂z(f /g)ˆz=g∂f∂xf∂g∂xg2ˆx+g∂f∂yf∂g∂yg2ˆy+g∂f∂zf∂g∂zg2ˆz=1g2[g(∂f∂xˆx+∂f∂yˆy+∂f∂zˆz)f(∂g∂xˆx+∂g∂yˆy+∂g∂zˆz)]=gffgg2.qed∇·(A/g) =∂x(Ax/g) +∂y(Ay/g) +∂z(Az/g)=g∂Ax∂xAx ∂g∂xg2+g∂Ay∂yAy ∂g∂yg2+g∂Az∂zAz ∂g∂xg2=1g2[g(∂Ax∂x+∂Ay∂y+∂Az∂z)(Ax ∂g∂x+Ay ∂g∂y+Az ∂g∂z)]=g·AA·gg2.qed[∇×(A/g)]x=∂y(Az/g)∂z(Ay/g)=g∂Az∂yAz ∂g∂yg2g∂Ay∂zAy ∂g∂zg2=1g2[g(∂Az∂y∂Ay∂z)(Az ∂g∂yAy ∂g∂z)]=g(×A)x+(A×g)xg2(same foryandz).qedProblem 1.25(a)A×B=ˆxˆyˆzx2y3z3y2x0=ˆx(6xz) +ˆy(9zy) +ˆz(2x26y2)∇·(A×B) =∂x(6xz) +∂y(9zy) +∂z(2x26y2) = 6z+ 9z+ 0 = 15z∇×A=ˆx(∂y(3z)∂z(2y))+ˆy(∂z(x)∂x(3z))+ˆz(∂x(2y)∂y(x))= 0;B·(∇×A) = 0∇×B=ˆx(∂y(0)∂z(2x))+ˆy(∂z(3y)∂x(0))+ˆz(∂x(2x)∂y(3y))=5ˆz;A·(∇×B) =15z∇·(A×B)?=B·(∇×A)A·(∇×B) = 0(15z) = 15z.X(b)A·B= 3xy4xy=xy;(A·B) =(xy) =ˆx∂x(xy) +ˆy∂y(xy) =yˆxxˆyA×(∇×B) =ˆxˆyˆzx2y3z005=ˆx(10y) +ˆy(5x);B×(∇×A) =0(A·∇)B=(x∂x+ 2y∂y+ 3z∂z)(3yˆx2xˆy) =ˆx(6y) +ˆy(2x)(B·∇)A=(3y∂x2x∂y)(xˆx+ 2yˆy+ 3zˆz) =ˆx(3y) +ˆy(4x)A×(∇×B) +B×(∇×A) + (A·∇)B+ (B·∇)A=10yˆx+ 5xˆy+ 6yˆx2xˆy+ 3yˆx4xˆy=yˆxxˆy=∇·(A·B).X(c)∇×(A×B) =ˆx(∂y(2x26y2)∂z(9zy))+ˆy(∂z(6xz)∂x(2x26y2))+ˆz(∂x(9zy)∂y(6xz))=ˆx(12y9y) +ˆy(6x+ 4x) +ˆz(0) =21yˆx+ 10xˆy∇·A=∂x(x) +∂y(2y) +∂z(3z) = 1 + 2 + 3 = 6;∇·B=∂x(3y) +∂y(2x) = 0c

Page 11

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 11 preview image

Loading page image...

CHAPTER 1. VECTOR ANALYSIS11(B·∇)A(A·∇)B+A(∇·B)B(∇·A) = 3yˆx4xˆy6yˆx+ 2xˆy18yˆx+ 12xˆy=21yˆx+ 10xˆy=∇×(A×B).XProblem 1.26(a)2Ta∂x2= 2;2Ta∂y2=2Ta∂z2= 02Ta= 2.(b)2Tb∂x2=2Tb∂y2=2Tb∂z2=Tb2Tb=3Tb=3 sinxsinysinz.(c)2Tc∂x2= 25Tc;2Tc∂y2=16Tc;2Tc∂z2=9Tc2Tc= 0.(d)2vx∂x2= 2 ;2vx∂y2=2vx∂z2= 02vx= 22vy∂x2=2vy∂y2= 0 ;2vy∂z2= 6x2vy= 6x2vz∂x2=2vz∂y2=2vz∂z2= 02vz= 02v= 2ˆx+ 6xˆy.Problem 1.27∇·(∇×v) =∂x(∂vz∂y∂vy∂z)+∂y(∂vx∂z∂vz∂x)+∂z(∂vy∂x∂vx∂y)=(2vz∂x ∂y2vz∂y ∂x)+(2vx∂y ∂z2vx∂z ∂y)+(2vy∂z ∂x2vy∂x ∂z)= 0, by equality of cross-derivatives.From Prob. 1.18:∇×va=6xzˆx+2zˆy+3z2ˆz∇·(∇×va) =∂x(6xz)+∂y(2z)+∂z(3z2) =6z+6z= 0.Problem 1.28∇×(t) =ˆxˆyˆz∂x∂y∂z∂t∂x∂t∂y∂t∂z=ˆx(2t∂y ∂z2t∂z ∂y)+ˆy(2t∂z ∂x2t∂x ∂z)+ˆz(2t∂x ∂y2t∂y ∂x)= 0, by equality of cross-derivatives.In Prob. 1.11(b),f= 2xy3z4ˆx+ 3x2y2z4ˆy+ 4x2y3z3ˆz, so∇×(f) =ˆxˆyˆz∂x∂y∂z2xy3z43x2y2z44x2y3z3=ˆx(3·4x2y2z34·3x2y2z3) +ˆy(4·2xy3z32·4xy3z3) +ˆz(2·3xy2z43·2xy2z4) = 0.XProblem 1.29(a) (0,0,0)−→(1,0,0). x: 01, y=z= 0;dl=dxˆx;v·dl=x2dx;v·dl=10x2dx= (x3/3)|10= 1/3.(1,0,0)−→(1,1,0). x= 1, y: 01, z= 0;dl=dyˆy;v·dl= 2yz dy= 0;v·dl= 0.(1,1,0)−→(1,1,1). x=y= 1, z: 01;dl=dzˆz;v·dl=y2dz=dz;v·dl=10dz=z|10= 1.Total:v·dl= (1/3) + 0 + 1 =4/3.(b) (0,0,0)−→(0,0,1). x=y= 0, z: 01;dl=dzˆz;v·dl=y2dz= 0;v·dl= 0.(0,0,1)−→(0,1,1). x= 0, y: 01, z= 1;dl=dyˆy;v·dl= 2yz dy= 2y dy;v·dl=102y dy=y2|10= 1.(0,1,1)−→(1,1,1). x: 01, y=z= 1;dl=dxˆx;v·dl=x2dx;v·dl=10x2dx= (x3/3)|10= 1/3.Total:v·dl= 0 + 1 + (1/3) =4/3.(c)x=y=z: 01;dx=dy=dz;v·dl=x2dx+ 2yz dy+y2dz=x2dx+ 2x2dx+x2dx= 4x2dx;v·dl=104x2dx= (4x3/3)|10=4/3.(d)v·dl= (4/3)(4/3) =0.c

Page 12

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 12 preview image

Loading page image...

12CHAPTER 1. VECTOR ANALYSISProblem 1.30x, y: 01, z= 0;da=dx dyˆz;v·da=y(z23)dx dy=3y dx dy;v·da=320dx20y dy=3(x|20)(y22|20) =3(2)(2) =12.In Ex. 1.7 we got 20, for the same boundary line (the square in thexy-plane), so the answer isno:the surface integral doesnotdepend only on the boundary line. Thetotalfluxfor the cube is 20 + 12 =32.Problem 1.31T dτ=z2dx dy dz.You can do the integrals in any order—here it is simplest to savezfor last:z2[∫(∫dx)dy]dz.The sloping surface isx+y+z= 1, so thexintegral is(1yz)0dx= 1yz.For a givenz,yranges from 0 to1z, so theyintegral is(1z)0(1yz)dy= [(1z)y(y2/2)]|(1z)0= (1z)2[(1z)2/2] = (1z)2/2 =(1/2)z+ (z2/2).Finally, thezintegral is10z2(12z+z22)dz=10(z22z3+z42)dz= (z36z44+z510)|10=1614+110=1/60.ˆProblem 1.32T(b) = 1 + 4 + 2 = 7;T(a) = 0.T(b)T(a) = 7.T= (2x+ 4y)ˆx+ (4x+ 2z3)y+ (6yz2)ˆz;T·dl= (2x+ 4y)dx+ (4x+ 2z3)dy+ (6yz2)dz(a) Segment 1:x: 01, y=z=dy=dz= 0.T·dl=10(2x)dx=x210= 1.Segment 2:y: 01, x= 1, z= 0, dx=dz= 0.T·dl=10(4)dy= 4y|10= 4.Segment 3:z: 01, x=y= 1, dx=dy= 0.T·dl=10(6z2)dz= 2z310= 2.baT·dl= 7.X(b) Segment 1:z: 01, x=y=dx=dy= 0.T·dl=10(0)dz= 0.Segment 2:y: 01, x= 0, z= 1, dx=dz= 0.T·dl=10(2)dy= 2y|10= 2.Segment 3:x: 01, y=z= 1, dy=dz= 0.T·dl=10(2x+ 4)dx= (x2+ 4x)10= 1 + 4 = 5.baT·dl= 7.X(c)x: 01, y=x, z=x2, dy=dx, dz= 2x dx.T·dl= (2x+ 4x)dx+ (4x+ 2x6)dx+ (6xx4)2x dx= (10x+ 14x6)dx.baT·dl=10(10x+ 14x6)dx= (5x2+ 2x7)10= 5 + 2 = 7.XProblem 1.33∇·v=y+ 2z+ 3x(∇·v)=(y+ 2z+ 3x)dx dy dz=∫∫ {20(y+ 2z+ 3x)dx}dy dz[(y+ 2z)x+32x2]20= 2(y+ 2z) + 6={20(2y+ 4z+ 6)dy}dz[y2+ (4z+ 6)y]20= 4 + 2(4z+ 6) = 8z+ 16=20(8z+ 16)dz= (4z2+ 16z)20= 16 + 32 =48.Numbering the surfaces as in Fig. 1.29:c

Page 13

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 13 preview image

Loading page image...

CHAPTER 1. VECTOR ANALYSIS13(i)da=dy dzˆx, x= 2.v·da= 2y dy dz.v·da=∫∫2y dy dz= 2y220= 8.(ii)da=dy dzˆx, x= 0.v·da= 0.v·da= 0.(iii)da=dx dzˆy, y= 2.v·da= 4z dx dz.v·da=∫∫4z dx dz= 16.(iv)da=dx dzˆy, y= 0.v·da= 0.v·da= 0.(v)da=dx dyˆz, z= 2.v·da= 6x dx dy.v·da= 24.(vi)da=dx dyˆz, z= 0.v·da= 0.v·da= 0.v·da= 8 + 16 + 24 = 48XProblem 1.34∇×v=ˆx(02y) +ˆy(03z) +ˆz(0x) =2yˆx3zˆyxˆz.da=dy dzˆx, if we agree that the path integral shall run counterclockwise. So(∇×v)·da=2y dy dz.(∇×v)·da={2z0(2y)dy}dzy22z0=(2z)2=20(44z+z2)dz=(4z2z2+z33)∣20=(88 +83)=83-6zy@@@@@@y= 2zMeanwhile,v·dl= (xy)dx+ (2yz)dy+ (3zx)dz.There are three segments.-6zy@@@@@@-(1)@@I(2)?(3)(1)x=z= 0;dx=dz= 0. y: 02.v·dl= 0.(2)x= 0;z= 2y;dx= 0, dz=dy, y: 20.v·dl= 2yz dy.v·dl=022y(2y)dy=20(4y2y2)dy=(2y223y3)∣20=(823·8)=83.(3)x=y= 0;dx=dy= 0;z: 20.v·dl= 0.v·dl= 0.Sov·dl=83.XProblem 1.35By Corollary 1,(∇×v)·dashould equal43.∇×v= (4z22x)ˆx+ 2zˆz.(i)da=dy dzˆx, x= 1;y, z: 01.(∇×v)·da= (4z22)dy dz;(∇×v)·da=10(4z22)dz= (43z32z)10=432 =23.(ii)da=dx dyˆz, z= 0;x, y: 01.(∇×v)·da= 0;(∇×v)·da= 0.(iii)da=dx dzˆy, y= 1;x, z: 01.(∇×v)·da= 0;(∇×v)·da= 0.(iv)da=dx dzˆy, y= 0;x, z: 01.(∇×v)·da= 0;(∇×v)·da= 0.(v)da=dx dyˆz, z= 1;x, y: 01.(∇×v)·da= 2dx dy;(∇×v)·da= 2.(∇×v)·da=23+ 2 =43.Xc

Page 14

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 14 preview image

Loading page image...

14CHAPTER 1. VECTOR ANALYSISProblem 1.36(a) Use the product rule∇×(fA) =f(∇×A)A×(f) :Sf(∇×A)·da=S∇×(fA)·da+S[A×(f)]·da=PfA·dl+S[A×(f)]·da.qed(I used Stokes’ theorem in the last step.)(b) Use the product rule∇·(A×B) =B·(∇×A)A·(∇×B) :VB·(∇×A)=V∇·(A×B)+VA·(∇×B)=S(A×B)·da+VA·(∇×B)dτ.qed(I used the divergence theorem in the last step.)Problem 1.37r=x2+y2+z2;θ= cos1(zx2+y2+z2);φ= tan1(yx).Problem 1.38There are many ways to do this one—probably the most illuminating way is to work it out by trigonometryfrom Fig. 1.36. The most systematic approach is to study the expression:r=xˆx+yˆy+zˆz=rsinθcosφˆx+rsinθsinφˆy+rcosθˆz.If I only varyrslightly, thendr=∂r(r)dris a short vector pointing in the direction of increase inr. To makeit a unit vector, I must divide by its length. Thus:ˆr=r∂rr∂r;ˆθ=r∂θr∂θ;ˆφ=r∂φr∂φ.r∂r= sinθcosφˆx+ sinθsinφˆy+ cosθˆz;r∂r2= sin2θcos2φ+ sin2θsin2φ+ cos2θ= 1.r∂θ=rcosθcosφˆx+rcosθsinφˆyrsinθˆz;r∂θ2=r2cos2θcos2φ+r2cos2θsin2φ+r2sin2θ=r2.r∂φ=rsinθsinφˆx+rsinθcosφˆy;r∂φ2=r2sin2θsin2φ+r2sin2θcos2φ=r2sin2θ.ˆr= sinθcosφˆx+ sinθsinφˆy+ cosθˆz.ˆθ= cosθcosφˆx+ cosθsinφˆysinθˆz.ˆφ=sinφˆx+ cosφˆy.Check:ˆr·ˆr= sin2θ(cos2φ+ sin2φ) + cos2θ= sin2θ+ cos2θ= 1,Xˆθ·ˆφ=cosθsinφcosφ+ cosθsinφcosφ= 0,Xetc.sinθˆr= sin2θcosφˆx+ sin2θsinφˆy+ sinθcosθˆz.cosθˆθ= cos2θcosφˆx+ cos2θsinφˆysinθcosθˆz.Add these:(1) sinθˆr+ cosθˆθ= + cosφˆx+ sinφˆy;(2)ˆφ=sinφˆx+ cosφˆy.Multiply (1) by cosφ, (2) by sinφ, and subtract:ˆx= sinθcosφˆr+ cosθcosφˆθsinφˆφ.c

Page 15

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 15 preview image

Loading page image...

CHAPTER 1. VECTOR ANALYSIS15ˆMultiply (1) by sinφ, (2) by cosφ, and add:y= sinθsinφˆr+ cosθsinφˆθ+ cosφˆφ.cosθˆr= sinθcosθcosφˆx+ sinθcosθsinφˆy+ cos2θˆz.sinθˆθ= sinθcosθcosφˆx+ sinθcosθsinφˆysin2θˆz.Subtract these:ˆz= cosθˆrsinθˆθ.Problem 1.39(a)∇·v1=1r2∂r(r2r2) =1r24r3= 4r(∇·v1)=(4r)(r2sinθ dr dθ dφ) = (4)R0r3drπ0sinθ dθ2π0= (4)(R44)(2)(2π) = 4πR4v1·da=(r2ˆr)·(r2sinθ dθ dφˆr) =r4π0sinθ dθ2π0= 4πR4X(Note:at surface of spherer=R.)(b)∇·v2=1r2∂r(r2 1r2)= 0(∇·v2)= 0v2·da=∫ (1r2ˆr)(r2sinθ dθ dφˆr) =sinθ dθ dφ=4π.Theydon’tagree!The point is that this divergence is zeroexcept at the origin, where it blows up, so ourcalculation of(∇·v2) isincorrect. The right answer is 4π.Problem 1.40∇·v=1r2∂r(r2rcosθ) +1rsinθ∂θ(sinθ rsinθ) +1rsinθ∂φ(rsinθcosφ)=1r23r2cosθ+1rsinθr2 sinθcosθ+1rsinθrsinθ(sinφ)= 3 cosθ+ 2 cosθsinφ= 5 cosθsinφ(∇·v)=(5 cosθsinφ)r2sinθ dr dθ dφ=R0r2drθ20[2π0(5 cosθsinφ)]sinθ2π(5 cosθ)=(R33)(10π)π20sinθcosθ dθsin2θ2π20=12=5π3R3.Two surfaces—one the hemisphere:da=R2sinθ dθ dφˆr;r=R;φ: 02π, θ: 0π2.v·da=(rcosθ)R2sinθ dθ dφ=R3π20sinθcosθ dθ2π0=R3(12)(2π) =πR3.other the flat bottom:da= (dr)(rsinθ dφ)(+ˆθ) =r dr dφˆθ(hereθ=π2).r: 0R, φ: 02π.v·da=(rsinθ)(r dr dφ) =R0r2dr2π0= 2πR33.Total:v·da=πR3+23πR3=53πR3.XProblem 1.41t= (cosθ+ sinθcosφ)ˆr+ (sinθ+ cosθcosφ)ˆθ+1sinθ/(sinθ/sinφ)ˆφ2t=∇·(t)=1r2∂r(r2(cosθ+ sinθcosφ))+1rsinθ∂θ(sinθ(sinθ+ cosθcosφ)) +1rsinθ∂φ(sinφ)=1r22r(cosθ+ sinθcosφ) +1rsinθ(2 sinθcosθ+ cos2θcosφsin2θcosφ)1rsinθcosφ=1rsinθ[2 sinθcosθ+ 2 sin2θcosφ2 sinθcosθ+ cos2θcosφsin2θcosφcosφ]=1rsinθ[(sin2θ+ cos2θ) cosφcosφ]= 0.c

Page 16

Solution Manual For Introduction To Electrodynamics, 4th Edition - Page 16 preview image

Loading page image...

16CHAPTER 1. VECTOR ANALYSIS2t= 0Check:rcosθ=z, rsinθcosφ=xin Cartesian coordinatest=x+z. Obviously Laplacian is zero.Gradient Theorem:bat·dl=t(b)t(a)Segment 1:θ=π2, φ= 0, r: 02. dl=drˆr;t·dl= (cosθ+ sinθcosφ)dr= (0 + 1)dr=dr.t·dl=20dr= 2.Segment 2:θ=π2, r= 2, φ: 0π2.dl=rsinθ dφˆφ= 2ˆφ.t·dl= (sinφ)(2) =2 sinφ dφ.t·dl=π202 sinφ dφ= 2 cosφ|π20=2.Segment 3:r= 2, φ=π2;θ:π20.dl=r dθˆθ= 2ˆθ;t·dl= (sinθ+ cosθcosφ)(2) =2 sinθ dθ.t·dl=0π22 sinθ dθ= 2 cosθ|0π2= 2.Total:bat·dl= 22 + 2 =2 . Meanwhile,t(b)t(a) = [2(1 + 0)][0( )] = 2.XˆˆˆˆProblem 1.42From Fig. 1.42,ˆs= cosφˆx+ sinφˆy;ˆφ=sinφˆx+ cosφˆy;ˆz=ˆzMultiply first by cosφ, second by sinφ, and subtract:scosφˆφsinφ= cos2φˆx+ cosφsinφˆy+ sin2φˆxsinφcosφˆy=ˆx(sin2φ+ cos2φ) =ˆx.Soˆx= cosφssinφˆφ.Multiply first by sinφ, second by cosφ, and add:ssinφ+ˆφcosφ= sinφcosφˆx+ sin2φˆysinφcosφˆx+ cos2φˆy=ˆy(sin2φ+ cos2φ) =ˆy.Soˆy= sinφs+ cosφˆφ.ˆz=ˆz.Problem 1.43(a)∇·v=1s∂s(s s(2 + sin2φ))+1s∂φ(ssinφcosφ) +∂z(3z)=1s2s(2 + sin2φ) +1ss(cos2φsin2φ) + 3= 4 + 2 sin2φ+ cos2φsin2φ+ 3= 4 + sin2φ+ cos2φ+ 3 =8.(b)(∇·v)=(8)s ds dφ dz= 820s dsπ2050dz= 8(2)(π2)(5) =40π.Meanwhile, the surface integral has five parts:top:z= 5, da=s ds dφˆz;v·da= 3z s ds dφ= 15s ds dφ.v·da= 1520s dsπ20= 15π.bottom:z= 0, da=s ds dφˆz;v·da=3z s ds dφ= 0.v·da= 0.back:φ=π2, da=ds dzˆφ;v·da=ssinφcosφ ds dz= 0.v·da= 0.left:φ= 0, da=ds dzˆφ;v·da=ssinφcosφ ds dz= 0.v·da= 0.front:s= 2, da=s dφ dzˆs;v·da=s(2 + sin2φ)s dφ dz= 4(2 + sin2φ)dφ dz.v·da= 4π20(2 + sin2φ)50dz= (4)(π+π4)(5) = 25π.Sov·da= 15π+ 25π= 40π.X(c)∇×v=(1s∂φ(3z)∂z(ssinφcosφ))ˆs+(∂z(s(2 + sin2φ))∂s(3z))ˆφ+1s(∂s(s2sinφcosφ)∂φ(s(2 + sin2φ)))ˆz=1s(2ssinφcosφs2 sinφcosφ)ˆz=0.c
Preview Mode

This document has 295 pages. Sign in to access the full document!

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Subject
Physics

Related Documents

View all