Solution Manual for Trigonometry, 11th Edition
Page 1
S OLUTIONS M ANUAL T IM B RITT Jackson State Community College T RIGONOMETRY : A U NIT C IRCLE A PPROACH E LEVENTH E DITION Michael Sullivan Chicago State University Page 2
Page 3
Table of Contents Preface Chapter 1 Graphs and Functions 1.1 The Distance and Midpoint Formulas ......................................................................................... 1 1.2 Graphs of Equations in Two Variables; Circles........................................................................ 13 1.3 Functions and Their Graphs ...................................................................................................... 37 1.4 Properties of Functions ............................................................................................................. 55 1.5 Library of Functions; Piecewise-defined Functions ................................................................. 70 1.6 Graphing Techniques: Transformations ................................................................................... 82 1.7 One-to-One Functions; Inverse Functions ................................................................................ 98 Chapter Review.............................................................................................................................. 119 Chapter Test ................................................................................................................................... 129 Chapter Projects ............................................................................................................................. 132 Chapter 2 Trigonometric Functions 2.1 Angles, Arc Length, and Circular Motion .............................................................................. 135 2.2 Trigonometric Functions: Unit Circle Approach .................................................................... 144 2.3 Properties of the Trigonometric Functions ............................................................................. 162 2.4 Graphs of the Sine and Cosine Functions ............................................................................... 176 2.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions...................................... 196 2.6 Phase Shift; Sinusoidal Curve Fitting ..................................................................................... 206 Chapter Review.............................................................................................................................. 217 Chapter Test ................................................................................................................................... 225 Cumulative Review........................................................................................................................ 228 Chapter Projects ............................................................................................................................. 231 Chapter 3 Analytic Trigonometry 3.1 The Inverse Sine, Cosine, and Tangent Functions .................................................................. 234 3.2 The Inverse Trigonometric Functions (Continued) ................................................................ 247 3.3 Trigonometric Equations ........................................................................................................ 259 3.4 Trigonometric Identities ......................................................................................................... 280 3.5 Sum and Difference Formulas ................................................................................................ 292 3.6 Double-angle and Half-angle Formulas .................................................................................. 317 3.7 Product-to-Sum and Sum-to-Product Formulas...................................................................... 343 Chapter Review.............................................................................................................................. 356 Chapter Test ................................................................................................................................... 371 Cumulative Review........................................................................................................................ 376 Chapter Projects ............................................................................................................................. 379 Chapter 4 Applications of Trigonometric Functions 4.1 Right Triangle Trigonometry; Applications ........................................................................... 383 4.2 The Law of Sines .................................................................................................................... 397 4.3 The Law of Cosines ................................................................................................................ 411 4.4 Area of a Triangle ................................................................................................................... 424 4.5 Simple Harmonic Motion; Damped Motion; Combining Waves ........................................... 433 Chapter Review.............................................................................................................................. 443 Chapter Test ................................................................................................................................... 449 Cumulative Review........................................................................................................................ 453 Chapter Projects ............................................................................................................................. 456 Page 4
Chapter 5 Polar Coordinates; Vectors 5.1 Polar Coordinates.................................................................................................................... 460 5.2 Polar Equations and Graphs .................................................................................................... 469 5.3 The Complex Plane; De Moivre’s Theorem ........................................................................... 498 5.4 Vectors .................................................................................................................................... 511 5.5 The Dot Product ...................................................................................................................... 524 5.6 Vectors in Space ..................................................................................................................... 530 5.7 The Cross Product................................................................................................................... 536 Chapter Review.............................................................................................................................. 547 Chapter Test ................................................................................................................................... 556 Cumulative Review........................................................................................................................ 560 Chapter Projects ............................................................................................................................. 562 Chapter 6 Analytic Geometry 6.2 The Parabola ........................................................................................................................... 566 6.3 The Ellipse .............................................................................................................................. 581 6.4 The Hyperbola ........................................................................................................................ 598 6.5 Rotation of Axes; General Form of a Conic ........................................................................... 618 6.6 Polar Equations of Conics ....................................................................................................... 631 6.7 Plane Curves and Parametric Equations ................................................................................. 640 Chapter Review.............................................................................................................................. 654 Chapter Test ................................................................................................................................... 664 Cumulative Review........................................................................................................................ 668 Chapter Projects ............................................................................................................................. 670 Chapter 7 Exponential and Logarithmic Functions 7.1 Exponential Functions ............................................................................................................ 674 7.2 Logarithmic Functions ............................................................................................................ 695 7.3 Properties of Logarithms ........................................................................................................ 717 7.4 Logarithmic and Exponential Equations ................................................................................. 726 7.5 Financial Models .................................................................................................................... 745 7.6 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models .................................................................................................................... 753 7.7 Building Exponential, Logarithmic, and Logistic Models from Data..................................... 763 Chapter Review.............................................................................................................................. 768 Chapter Test ................................................................................................................................... 777 Cumulative Review........................................................................................................................ 780 Chapter Projects ............................................................................................................................. 782 Appendix A Review A.1 Algebra Essentials .................................................................................................................. 784 A.2 Geometry Essentials ............................................................................................................... 789 A.3 Factoring Polynomials; Completing the Square..................................................................... 795 A.4 Solving Equations .................................................................................................................. 799 A.5 Complex Numbers; Quadratic Equations in the Complex Number System .......................... 813 A.6 Interval Notation; Solving Inequalities .................................................................................. 818 A.7 n th Roots; Rational Exponents ............................................................................................... 830 A.8 Lines....................................................................................................................................... 840 Page 5
Appendix B Graphing Utilities B.1 The Viewing Rectangle .......................................................................................................... 857 B.2 Using a Graphing Utility to Graph Equations ........................................................................ 858 B.3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry .............................. 863 B.5 Square Screens ....................................................................................................................... 865 Page 6
1 Chapter 1 Graphs and Functions Section 1.1 1. 0 2. 5 3 8 8 3. 2 2 3 4 25 5 4. 2 2 2 11 60 121 3600 3721 61 Since the sum of the squares of two of the sides of the triangle equals the square of the third side, the triangle is a right triangle. 5. 1 2 bh 6. true 7. x- coordinate or abscissa; y -coordinate or ordinate 8. quadrants 9. midpoint 10. False; the distance between two points is never negative. 11. False; points that lie in quadrant IV will have a positive x -coordinate and a negative y -coordinate. The point 1, 4 lies in quadrant II. 12. True; 1 2 1 2 , 2 2 x x y y M 13. b 14. a 15. (a) Quadrant II (b) x -axis (c) Quadrant III (d) Quadrant I (e) y -axis (f) Quadrant IV 16. (a) Quadrant I (b) Quadrant III (c) Quadrant II (d) Quadrant I (e) y -axis (f) x -axis 17. The points will be on a vertical line that is two units to the right of the y -axis. Page 7
Chapter 1: Graphs and Functions 2 18. The points will be on a horizontal line that is three units above the x -axis. 19. 2 2 1 2 2 2 ( , ) (2 0) (1 0) 2 1 4 1 5 d P P 20. 2 2 1 2 2 2 ( , ) ( 2 0) (1 0) ( 2) 1 4 1 5 d P P 21. 2 2 1 2 2 2 ( , ) ( 2 1) (2 1) ( 3) 1 9 1 10 d P P 22. 2 2 1 2 2 2 ( , ) 2 ( 1) (2 1) 3 1 9 1 10 d P P 23. 2 2 1 2 2 2 ( , ) (5 3) 4 4 2 8 4 64 68 2 17 d P P 24. 2 2 1 2 2 2 ( , ) 2 1 4 0 3 4 9 16 25 5 d P P 25. 2 2 1 2 2 2 ( , ) 4 ( 7) (0 3) 11 ( 3) 121 9 130 d P P 26. 2 2 1 2 2 2 ( , ) 4 2 2 ( 3) 2 5 4 25 29 d P P 27. 2 2 1 2 2 2 ( , ) (6 5) 1 ( 2) 1 3 1 9 10 d P P 28. 2 2 1 2 2 2 ( , ) 6 ( 4) 2 ( 3) 10 5 100 25 125 5 5 d P P 29. 2 2 1 2 2 2 ( , ) 2.3 ( 0.2) 1.1 (0.3) 2.5 0.8 6.25 0.64 6.89 2.62 d P P 30.