Solution Manual for Trigonometry, 11th Edition

Solution Manual for Trigonometry, 11th Edition is an essential tool for mastering your textbook, offering detailed solutions and helpful explanations.

Joseph Martinez
Contributor
4.4
42
5 months ago
Preview (16 of 869 Pages)
100%
Purchase to unlock

Loading document content...

Preview Mode

Sign in to access the full document!

Solution Manual for Trigonometry, 11th Edition

Page 1

S OLUTIONS M ANUAL T IM B RITT Jackson State Community College T RIGONOMETRY : A U NIT C IRCLE A PPROACH E LEVENTH E DITION Michael Sullivan Chicago State University

Page 2

Page 3

Table of Contents Preface Chapter 1 Graphs and Functions 1.1 The Distance and Midpoint Formulas ......................................................................................... 1 1.2 Graphs of Equations in Two Variables; Circles........................................................................ 13 1.3 Functions and Their Graphs ...................................................................................................... 37 1.4 Properties of Functions ............................................................................................................. 55 1.5 Library of Functions; Piecewise-defined Functions ................................................................. 70 1.6 Graphing Techniques: Transformations ................................................................................... 82 1.7 One-to-One Functions; Inverse Functions ................................................................................ 98 Chapter Review.............................................................................................................................. 119 Chapter Test ................................................................................................................................... 129 Chapter Projects ............................................................................................................................. 132 Chapter 2 Trigonometric Functions 2.1 Angles, Arc Length, and Circular Motion .............................................................................. 135 2.2 Trigonometric Functions: Unit Circle Approach .................................................................... 144 2.3 Properties of the Trigonometric Functions ............................................................................. 162 2.4 Graphs of the Sine and Cosine Functions ............................................................................... 176 2.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions...................................... 196 2.6 Phase Shift; Sinusoidal Curve Fitting ..................................................................................... 206 Chapter Review.............................................................................................................................. 217 Chapter Test ................................................................................................................................... 225 Cumulative Review........................................................................................................................ 228 Chapter Projects ............................................................................................................................. 231 Chapter 3 Analytic Trigonometry 3.1 The Inverse Sine, Cosine, and Tangent Functions .................................................................. 234 3.2 The Inverse Trigonometric Functions (Continued) ................................................................ 247 3.3 Trigonometric Equations ........................................................................................................ 259 3.4 Trigonometric Identities ......................................................................................................... 280 3.5 Sum and Difference Formulas ................................................................................................ 292 3.6 Double-angle and Half-angle Formulas .................................................................................. 317 3.7 Product-to-Sum and Sum-to-Product Formulas...................................................................... 343 Chapter Review.............................................................................................................................. 356 Chapter Test ................................................................................................................................... 371 Cumulative Review........................................................................................................................ 376 Chapter Projects ............................................................................................................................. 379 Chapter 4 Applications of Trigonometric Functions 4.1 Right Triangle Trigonometry; Applications ........................................................................... 383 4.2 The Law of Sines .................................................................................................................... 397 4.3 The Law of Cosines ................................................................................................................ 411 4.4 Area of a Triangle ................................................................................................................... 424 4.5 Simple Harmonic Motion; Damped Motion; Combining Waves ........................................... 433 Chapter Review.............................................................................................................................. 443 Chapter Test ................................................................................................................................... 449 Cumulative Review........................................................................................................................ 453 Chapter Projects ............................................................................................................................. 456

Page 4

Chapter 5 Polar Coordinates; Vectors 5.1 Polar Coordinates.................................................................................................................... 460 5.2 Polar Equations and Graphs .................................................................................................... 469 5.3 The Complex Plane; De Moivre’s Theorem ........................................................................... 498 5.4 Vectors .................................................................................................................................... 511 5.5 The Dot Product ...................................................................................................................... 524 5.6 Vectors in Space ..................................................................................................................... 530 5.7 The Cross Product................................................................................................................... 536 Chapter Review.............................................................................................................................. 547 Chapter Test ................................................................................................................................... 556 Cumulative Review........................................................................................................................ 560 Chapter Projects ............................................................................................................................. 562 Chapter 6 Analytic Geometry 6.2 The Parabola ........................................................................................................................... 566 6.3 The Ellipse .............................................................................................................................. 581 6.4 The Hyperbola ........................................................................................................................ 598 6.5 Rotation of Axes; General Form of a Conic ........................................................................... 618 6.6 Polar Equations of Conics ....................................................................................................... 631 6.7 Plane Curves and Parametric Equations ................................................................................. 640 Chapter Review.............................................................................................................................. 654 Chapter Test ................................................................................................................................... 664 Cumulative Review........................................................................................................................ 668 Chapter Projects ............................................................................................................................. 670 Chapter 7 Exponential and Logarithmic Functions 7.1 Exponential Functions ............................................................................................................ 674 7.2 Logarithmic Functions ............................................................................................................ 695 7.3 Properties of Logarithms ........................................................................................................ 717 7.4 Logarithmic and Exponential Equations ................................................................................. 726 7.5 Financial Models .................................................................................................................... 745 7.6 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models .................................................................................................................... 753 7.7 Building Exponential, Logarithmic, and Logistic Models from Data..................................... 763 Chapter Review.............................................................................................................................. 768 Chapter Test ................................................................................................................................... 777 Cumulative Review........................................................................................................................ 780 Chapter Projects ............................................................................................................................. 782 Appendix A Review A.1 Algebra Essentials .................................................................................................................. 784 A.2 Geometry Essentials ............................................................................................................... 789 A.3 Factoring Polynomials; Completing the Square..................................................................... 795 A.4 Solving Equations .................................................................................................................. 799 A.5 Complex Numbers; Quadratic Equations in the Complex Number System .......................... 813 A.6 Interval Notation; Solving Inequalities .................................................................................. 818 A.7 n th Roots; Rational Exponents ............................................................................................... 830 A.8 Lines....................................................................................................................................... 840

Page 5

Appendix B Graphing Utilities B.1 The Viewing Rectangle .......................................................................................................... 857 B.2 Using a Graphing Utility to Graph Equations ........................................................................ 858 B.3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry .............................. 863 B.5 Square Screens ....................................................................................................................... 865

Page 6

1 Chapter 1 Graphs and Functions Section 1.1 1. 0 2. 5 3 8 8   3. 2 2 3 4 25 5 4. 2 2 2 11 60 121 3600 3721 61 Since the sum of the squares of two of the sides of the triangle equals the square of the third side, the triangle is a right triangle. 5. 1 2 bh 6. true 7. x- coordinate or abscissa; y -coordinate or ordinate 8. quadrants 9. midpoint 10. False; the distance between two points is never negative. 11. False; points that lie in quadrant IV will have a positive x -coordinate and a negative y -coordinate. The point 1, 4 lies in quadrant II. 12. True; 1 2 1 2 , 2 2 x x y y M 13. b 14. a 15. (a) Quadrant II (b) x -axis (c) Quadrant III (d) Quadrant I (e) y -axis (f) Quadrant IV 16. (a) Quadrant I (b) Quadrant III (c) Quadrant II (d) Quadrant I (e) y -axis (f) x -axis 17. The points will be on a vertical line that is two units to the right of the y -axis.

Page 7

Chapter 1: Graphs and Functions 2 18. The points will be on a horizontal line that is three units above the x -axis. 19. 2 2 1 2 2 2 ( , ) (2 0) (1 0) 2 1 4 1 5 d P P 20. 2 2 1 2 2 2 ( , ) ( 2 0) (1 0) ( 2) 1 4 1 5 d P P 21. 2 2 1 2 2 2 ( , ) ( 2 1) (2 1) ( 3) 1 9 1 10 d P P 22. 2 2 1 2 2 2 ( , ) 2 ( 1) (2 1) 3 1 9 1 10 d P P   23.   2 2 1 2 2 2 ( , ) (5 3) 4 4 2 8 4 64 68 2 17 d P P   24.   2 2 1 2 2 2 ( , ) 2 1 4 0 3 4 9 16 25 5 d P P   25. 2 2 1 2 2 2 ( , ) 4 ( 7) (0 3) 11 ( 3) 121 9 130     d P P 26. 2 2 1 2 2 2 ( , ) 4 2 2 ( 3) 2 5 4 25 29 d P P   27. 2 2 1 2 2 2 ( , ) (6 5) 1 ( 2) 1 3 1 9 10   d P P 28. 2 2 1 2 2 2 ( , ) 6 ( 4) 2 ( 3) 10 5 100 25 125 5 5 d P P     29. 2 2 1 2 2 2 ( , ) 2.3 ( 0.2) 1.1 (0.3) 2.5 0.8 6.25 0.64 6.89 2.62   d P P 30. 2 2 1 2 2 2 ( , ) 0.3 1.2 1.1 2.3 ( 1.5) ( 1.2) 2.25 1.44 3.69 1.92   d P P 31. 2 2 1 2 2 2 2 2 ( , ) (0 ) (0 ) ( ) ( ) d P P a b a b a b   32. 2 2 1 2 2 2 2 2 2 ( , ) (0 ) (0 ) ( ) ( ) 2 2 d P P a a a a a a a a   33. ( 2,5), (1,3), ( 1, 0) A B C     2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 1 ( 2) (3 5) 3 ( 2) 9 4 13 ( , ) 1 1 (0 3) ( 2) ( 3) 4 9 13 ( , ) 1 ( 2) (0 5) 1 ( 5) 1 25 26 d A B d B C d A C             

Page 8

Section 1.1: The Distance and Midpoint Formulas 3 Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: 2 2 2 2 2 2 ( , ) ( , ) ( , ) 13 13 26 13 13 26 26 26 d A B d B C d A C The area of a triangle is 1 2 A bh . In this problem,   1 ( , ) ( , ) 2 1 1 13 13 13 2 2 13 square units 2 A d A B d B C 34. ( 2, 5), (12, 3), (10, 11) A B C   2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 12 ( 2) (3 5) 14 ( 2) 196 4 200 10 2 ( , ) 10 12 ( 11 3) ( 2) ( 14) 4 196 200 10 2 ( , ) 10 ( 2) ( 11 5) 12 ( 16) 144 256 400 20 d A B d B C d A C               Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: 2 2 2 2 2 2 ( , ) ( , ) ( , ) 10 2 10 2 20 200 200 400 400 400 d A B d B C d A C The area of a triangle is 1 2 A bh . In this problem,   1 ( , ) ( , ) 2 1 10 2 10 2 2 1 100 2 100 square units 2 A d A B d B C 35. ( 5,3), (6, 0), (5,5) A B C   2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 6 ( 5) (0 3) 11 ( 3) 121 9 130 ( , ) 5 6 (5 0) ( 1) 5 1 25 26 ( , ) 5 ( 5) (5 3) 10 2 100 4 104 2 26 d A B d B C d A C       Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

Page 9

Chapter 1: Graphs and Functions 4 2 2 2 2 2 2 ( , ) ( , ) ( , ) 104 26 130 104 26 130 130 130 d A C d B C d A B The area of a triangle is 1 2 A bh . In this problem,   1 ( , ) ( , ) 2 1 104 26 2 1 2 26 26 2 1 2 26 2 26 square units A d A C d B C 36. ( 6, 3), (3, 5), ( 1, 5) A B C     2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 3 ( 6) ( 5 3) 9 ( 8) 81 64 145 ( , ) 1 3 (5 ( 5)) ( 4) 10 16 100 116 2 29 ( , ) 1 ( 6) (5 3) 5 2 25 4 29 d A B d B C d A C              Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: 2 2 2 2 2 2 ( , ) ( , ) ( , ) 29 2 29 145 29 4 29 145 29 116 145 145 145 d A C d B C d A B The area of a triangle is 1 2 A bh . In this problem,   1 ( , ) ( , ) 2 1 29 2 29 2 1 2 29 2 29 square units A d A C d B C 37. (4, 3), (0, 3), (4, 2) A B C 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) (0 4) 3 ( 3) ( 4) 0 16 0 16 4 ( , ) 4 0 2 ( 3) 4 5 16 25 41 ( , ) (4 4) 2 ( 3) 0 5 0 25 25 5 d A B d B C d A C         Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

Page 10

Section 1.1: The Distance and Midpoint Formulas 5 2 2 2 2 2 2 ( , ) ( , ) ( , ) 4 5 41 16 25 41 41 41 d A B d A C d B C The area of a triangle is 1 2 A bh . In this problem,   1 ( , ) ( , ) 2 1 4 5 2 10 square units A d A B d A C 38. (4, 3), (4, 1), (2, 1) A B C 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) (4 4) 1 ( 3) 0 4 0 16 16 4 ( , ) 2 4 1 1 ( 2) 0 4 0 4 2 ( , ) (2 4) 1 ( 3) ( 2) 4 4 16 20 2 5 d A B d B C d A C     Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: 2 2 2 2 2 2 ( , ) ( , ) ( , ) 4 2 2 5 16 4 20 20 20 d A B d B C d A C The area of a triangle is 1 2 A bh . In this problem,   1 ( , ) ( , ) 2 1 4 2 2 4 square units A d A B d B C 39. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 4 3 5 , 2 2 8 0 , 2 2 (4, 0) x x y y x y     40. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 2 2 0 4 , 2 2 0 4 , 2 2 0, 2 x x y y x y     41. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 1 8 4 0 , 2 2 7 4 , 2 2 7 , 2 2         x x y y x y

Page 11

Chapter 1: Graphs and Functions 6 42. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 2 4 3 2 , 2 2 6 1 , 2 2 1 3, 2 x x y y x y     43. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 7 9 5 1 , 2 2 4 16 , 2 2 (8, 2)   x x y y x y 44. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 2 3 2 , 2 2 2 1 , 2 2 1 1, 2 x x y y x y 45. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 0 0 , 2 2 , 2 2 x x y y x y a b a b     46. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 0 0 , 2 2 , 2 2 x x y y x y a a a a     47. The x coordinate would be 2 3 5 and the y coordinate would be 5 2 3 . Thus the new point would be 5,3 . 48. The new x coordinate would be 1 2 3     and the new y coordinate would be 6 4 10 . Thus the new point would be 3,10 49. a. If we use a right triangle to solve the problem, we know the hypotenuse is 13 units in length. One of the legs of the triangle will be 2+3=5. Thus the other leg will be: 2 2 2 2 2 5 13 25 169 144 12 b b b b Thus the coordinates will have an y value of 1 12 13     and 1 12 11   . So the points are 3,11 and 3, 13 . b. Consider points of the form 3, y that are a distance of 13 units from the point 2, 1 .   2 2 2 1 2 1 2 2 2 2 2 2 3 ( 2) 1 5 1 25 1 2 2 26 d x x y y y y y y y y          2 2 2 2 2 2 13 2 26 13 2 26 169 2 26 0 2 143 0 11 13 y y y y y y y y y y 11 0 11 y y or 13 0 13 y y   Thus, the points 3,11 and 3, 13 are a distance of 13 units from the point 2, 1 .

Page 12

Section 1.1: The Distance and Midpoint Formulas 7 50. a. If we use a right triangle to solve the problem, we know the hypotenuse is 17 units in length. One of the legs of the triangle will be 2+6=8. Thus the other leg will be: 2 2 2 2 2 8 17 64 289 225 15 b b b b Thus the coordinates will have an x value of 1 15 14   and 1 15 16 . So the points are 14, 6 and 16, 6 . b. Consider points of the form , 6 x that are a distance of 17 units from the point 1, 2 .   2 2 2 1 2 1 2 2 2 2 2 2 1 2 6 2 1 8 2 1 64 2 65 d x x y y x x x x x x x    2 2 2 2 2 2 17 2 65 17 2 65 289 2 65 0 2 224 0 14 16 x x x x x x x x x x 14 0 14 x x   or 16 0 16 x x Thus, the points 14, 6 and 16, 6 are a distance of 13 units from the point 1, 2 . 51. Points on the x -axis have a y -coordinate of 0. Thus, we consider points of the form , 0 x that are a distance of 6 units from the point 4, 3 . 2 2 2 1 2 1 2 2 2 2 2 2 4 3 0 16 8 3 16 8 9 8 25 d x x y y x x x x x x x     2 2 2 2 2 2 2 6 8 25 6 8 25 36 8 25 0 8 11 ( 8) ( 8) 4(1)( 11) 2(1) 8 64 44 8 108 2 2 8 6 3 4 3 3 2 x x x x x x x x x   4 3 3 x or 4 3 3 x Thus, the points 4 3 3, 0 and 4 3 3, 0 are on the x -axis and a distance of 6 units from the point 4, 3 . 52. Points on the y -axis have an x -coordinate of 0. Thus, we consider points of the form 0, y that are a distance of 6 units from the point 4, 3 . 2 2 2 1 2 1 2 2 2 2 2 2 4 0 3 4 9 6 16 9 6 6 25 d x x y y y y y y y y y  

Page 13

Chapter 1: Graphs and Functions 8 2 2 2 2 2 2 2 6 6 25 6 6 25 36 6 25 0 6 11 ( 6) (6) 4(1)( 11) 2(1) 6 36 44 6 80 2 2 6 4 5 3 2 5 2 y y y y y y y y y   3 2 5 y   or 3 2 5 y   Thus, the points 0, 3 2 5 and 0, 3 2 5 are on the y- axis and a distance of 6 units from the point 4, 3 . 53. a. To shift 3 units left and 4 units down, we subtract 3 from the x -coordinate and subtract 4 from the y -coordinate. 2 3,5 4 1,1 b. To shift left 2 units and up 8 units, we subtract 2 from the x -coordinate and add 8 to the y -coordinate. 2 2,5 8 0,13 54. Let the coordinates of point B be , x y . Using the midpoint formula, we can write 1 8 2,3 , 2 2 x y   . This leads to two equations we can solve. 1 2 2 1 4 5 x x x     8 3 2 8 6 2 y y y   Point B has coordinates 5, 2 . 55. 1 2 1 2 , , 2 2 x x y y M x y . 1 1 1 , ( 3, 6) P x y   and ( , ) ( 1, 4) x y   , so 1 2 2 2 2 2 3 1 2 2 3 1 x x x x x x   and 1 2 2 2 2 2 6 4 2 8 6 2 y y y y y y Thus, 2 (1, 2) P . 56. 1 2 1 2 , , 2 2 x x y y M x y . 2 2 2 , (7, 2) P x y and ( , ) (5, 4) x y , so 1 2 1 1 1 2 7 5 2 10 7 3 x x x x x x and 1 2 1 1 1 2 ( 2) 4 2 8 ( 2) 6 y y y y y y     Thus, 1 (3, 6) P . 57. The midpoint of AB is: 0 6 0 0 , 2 2 3, 0 D   The midpoint of AC is: 0 4 0 4 , 2 2 2, 2 E   The midpoint of BC is: 6 4 0 4 , 2 2 5, 2 F   2 2 2 2 ( , ) 0 4 (3 4) ( 4) ( 1) 16 1 17 d C D   2 2 2 2 ( , ) 2 6 (2 0) ( 4) 2 16 4 20 2 5 d B E 2 2 2 2 ( , ) (2 0) (5 0) 2 5 4 25 29 d A F

Page 14

Section 1.1: The Distance and Midpoint Formulas 9 58. Let 1 2 (0, 0), (0, 4), ( , ) P P P x y 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 , (0 0) (4 0) 16 4 , ( 0) ( 0) 4 16 , ( 0) ( 4) ( 4) 4 ( 4) 16 d P P d P P x y x y x y d P P x y x y x y Therefore, 2 2 2 2 4 8 16 8 16 2 y y y y y y y which gives 2 2 2 2 16 12 2 3 x x x   Two triangles are possible. The third vertex is 2 3, 2 or 2 3, 2 . 59. 2 2 1 2 2 2 ( , ) ( 4 2) (1 1) ( 6) 0 36 6 d P P 2 2 2 3 2 2 ( , ) 4 ( 4) ( 3 1) 0 ( 4) 16 4 d P P       2 2 1 3 2 2 ( , ) ( 4 2) ( 3 1) ( 6) ( 4) 36 16 52 2 13 d P P     Since 2 2 2 1 2 2 3 1 3 ( , ) ( , ) ( , ) d P P d P P d P P , the triangle is a right triangle. 60. 2 2 1 2 2 2 ( , ) 6 ( 1) (2 4) 7 ( 2) 49 4 53 d P P     2 2 2 3 2 2 ( , ) 4 6 ( 5 2) ( 2) ( 7) 4 49 53 d P P     2 2 1 3 2 2 ( , ) 4 ( 1) ( 5 4) 5 ( 9) 25 81 106 d P P       Since 2 2 2 1 2 2 3 1 3 ( , ) ( , ) ( , ) d P P d P P d P P , the triangle is a right triangle. Since 1 2 2 3 , , d P P d P P , the triangle is isosceles. Therefore, the triangle is an isosceles right triangle. 61. 2 2 1 2 2 2 ( , ) 0 ( 2) 7 ( 1) 2 8 4 64 68 2 17 d P P     2 2 2 3 2 2 ( , ) 3 0 (2 7) 3 ( 5) 9 25 34 d P P   2 2 1 3 2 2 ( , ) 3 ( 2) 2 ( 1) 5 3 25 9 34 d P P     Since 2 3 1 3 ( , ) ( , ) d P P d P P , the triangle is isosceles. Since 2 2 2 1 3 2 3 1 2 ( , ) ( , ) ( , ) d P P d P P d P P , the triangle is also a right triangle. Therefore, the triangle is an isosceles right triangle.

Page 15

Chapter 1: Graphs and Functions 10 62. 2 2 1 2 2 2 ( , ) 4 7 0 2 ( 11) ( 2) 121 4 125 5 5 d P P   2 2 2 3 2 2 ( , ) 4 ( 4) (6 0) 8 6 64 36 100 10 d P P   2 2 1 3 2 2 ( , ) 4 7 6 2 ( 3) 4 9 16 25 5 d P P Since 2 2 2 1 3 2 3 1 2 ( , ) ( , ) ( , ) d P P d P P d P P , the triangle is a right triangle. 63. Using the Pythagorean Theorem: 2 2 2 2 2 90 90 8100 8100 16200 16200 90 2 127.28 feet d d d d 90 90 90 90 d 64. Using the Pythagorean Theorem: 2 2 2 2 2 60 60 3600 3600 7200 7200 60 2 84.85 feet d d d d 60 60 60 60 d 65. a. First: (90, 0), Second: (90, 90), Third: (0, 90) (0,0) (0,90) (90,0) (90,90) X Y b. Using the distance formula: 2 2 2 2 (310 90) (15 90) 220 ( 75) 54025 5 2161 232.43 feet d   c. Using the distance formula: 2 2 2 2 (300 0) (300 90) 300 210 134100 30 149 366.20 feet d 66. a. First: (60, 0), Second: (60, 60) Third: (0, 60) (0,0) (0,60) (60,0) (60,60) x y b. Using the distance formula: 2 2 2 2 (180 60) (20 60) 120 ( 40) 16000 40 10 126.49 feet d   c. Using the distance formula: 2 2 2 2 (220 0) (220 60) 220 160 74000 20 185 272.03 feet d

Page 16

Section 1.1: The Distance and Midpoint Formulas 11 67. The Focus heading east moves a distance 60 t after t hours. The truck heading south moves a distance 40 t after t hours. Their distance apart after t hours is: 2 2 2 2 2 (60 ) (45 ) 3600 2025 5625 75 miles d t t t t t t 68. 15 miles 5280 ft 1 hr 22 ft/sec 1 hr 1 mile 3600 sec 2 2 2 100 22 10000 484 feet d t t 100 22 t d 69. a. The shortest side is between 1 (2.6, 1.5) P and 2 (2.7, 1.7) P . The estimate for the desired intersection point is: 1 2 1 2 2.6 2.7 1.5 1.7 , , 2 2 2 2 5.3 3.2 , 2 2 2.65, 1.6 x x y y     b. Using the distance formula: 2 2 2 2 (2.65 1.4) (1.6 1.3) (1.25) (0.3) 1.5625 0.09 1.6525 1.285 units d 70. Let 1 (2013, 102.87) P and 2 (2017, 126.17) P . The midpoint is: 1 2 1 2 , , 2 2 2013 2017 102.87 126.17 , 2 2 4030 229.04 , 2 2 2015, 114.52     x x y y x y The estimate for 2010 is $114.52 billion. The estimate net sales of Costco Wholesale Corporation in 2015 is $0.85 billion off from the reported value of $113.67 billion. 71. For 2009 we have the ordered pair 2009, 21756 and for 2017 we have the ordered pair 2017, 24858 . The midpoint is 2009 2017 21756 24858 year, $ , 2 2 4026 46614 , 2 2 2013, 23307 Using the midpoint, we estimate the poverty level in 2013 to be $23,307. This is lower than the actual value. 72. Let 1 0, 0 P , 2 , 0 P a , and 3 3 , 2 2 a a P   . Then 2 2 1 2 2 1 2 1 2 2 2 , 0 0 0 d P P x x y y a a a 2 2 2 3 2 1 2 1 2 2 2 2 2 2 , 3 0 2 2 3 4 4 4 4 d P P x x y y a a a a a a a a d 45t 60t
S OLUTIONS M ANUAL T IM B RITT Jackson State Community College T RIGONOMETRY : A U NIT C IRCLE A PPROACH E LEVENTH E DITION Michael Sullivan Chicago State University Table of Contents Preface Chapter 1 Graphs and Functions 1.1 The Distance and Midpoint Formulas ......................................................................................... 1 1.2 Graphs of Equations in Two Variables; Circles........................................................................ 13 1.3 Functions and Their Graphs ...................................................................................................... 37 1.4 Properties of Functions ............................................................................................................. 55 1.5 Library of Functions; Piecewise-defined Functions ................................................................. 70 1.6 Graphing Techniques: Transformations ................................................................................... 82 1.7 One-to-One Functions; Inverse Functions ................................................................................ 98 Chapter Review.............................................................................................................................. 119 Chapter Test ................................................................................................................................... 129 Chapter Projects ............................................................................................................................. 132 Chapter 2 Trigonometric Functions 2.1 Angles, Arc Length, and Circular Motion .............................................................................. 135 2.2 Trigonometric Functions: Unit Circle Approach .................................................................... 144 2.3 Properties of the Trigonometric Functions ............................................................................. 162 2.4 Graphs of the Sine and Cosine Functions ............................................................................... 176 2.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions...................................... 196 2.6 Phase Shift; Sinusoidal Curve Fitting ..................................................................................... 206 Chapter Review.............................................................................................................................. 217 Chapter Test ................................................................................................................................... 225 Cumulative Review........................................................................................................................ 228 Chapter Projects ............................................................................................................................. 231 Chapter 3 Analytic Trigonometry 3.1 The Inverse Sine, Cosine, and Tangent Functions .................................................................. 234 3.2 The Inverse Trigonometric Functions (Continued) ................................................................ 247 3.3 Trigonometric Equations ........................................................................................................ 259 3.4 Trigonometric Identities ......................................................................................................... 280 3.5 Sum and Difference Formulas ................................................................................................ 292 3.6 Double-angle and Half-angle Formulas .................................................................................. 317 3.7 Product-to-Sum and Sum-to-Product Formulas...................................................................... 343 Chapter Review.............................................................................................................................. 356 Chapter Test ................................................................................................................................... 371 Cumulative Review........................................................................................................................ 376 Chapter Projects ............................................................................................................................. 379 Chapter 4 Applications of Trigonometric Functions 4.1 Right Triangle Trigonometry; Applications ........................................................................... 383 4.2 The Law of Sines .................................................................................................................... 397 4.3 The Law of Cosines ................................................................................................................ 411 4.4 Area of a Triangle ................................................................................................................... 424 4.5 Simple Harmonic Motion; Damped Motion; Combining Waves ........................................... 433 Chapter Review.............................................................................................................................. 443 Chapter Test ................................................................................................................................... 449 Cumulative Review........................................................................................................................ 453 Chapter Projects ............................................................................................................................. 456 Chapter 5 Polar Coordinates; Vectors 5.1 Polar Coordinates.................................................................................................................... 460 5.2 Polar Equations and Graphs .................................................................................................... 469 5.3 The Complex Plane; De Moivre’s Theorem ........................................................................... 498 5.4 Vectors .................................................................................................................................... 511 5.5 The Dot Product ...................................................................................................................... 524 5.6 Vectors in Space ..................................................................................................................... 530 5.7 The Cross Product................................................................................................................... 536 Chapter Review.............................................................................................................................. 547 Chapter Test ................................................................................................................................... 556 Cumulative Review........................................................................................................................ 560 Chapter Projects ............................................................................................................................. 562 Chapter 6 Analytic Geometry 6.2 The Parabola ........................................................................................................................... 566 6.3 The Ellipse .............................................................................................................................. 581 6.4 The Hyperbola ........................................................................................................................ 598 6.5 Rotation of Axes; General Form of a Conic ........................................................................... 618 6.6 Polar Equations of Conics ....................................................................................................... 631 6.7 Plane Curves and Parametric Equations ................................................................................. 640 Chapter Review.............................................................................................................................. 654 Chapter Test ................................................................................................................................... 664 Cumulative Review........................................................................................................................ 668 Chapter Projects ............................................................................................................................. 670 Chapter 7 Exponential and Logarithmic Functions 7.1 Exponential Functions ............................................................................................................ 674 7.2 Logarithmic Functions ............................................................................................................ 695 7.3 Properties of Logarithms ........................................................................................................ 717 7.4 Logarithmic and Exponential Equations ................................................................................. 726 7.5 Financial Models .................................................................................................................... 745 7.6 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models .................................................................................................................... 753 7.7 Building Exponential, Logarithmic, and Logistic Models from Data..................................... 763 Chapter Review.............................................................................................................................. 768 Chapter Test ................................................................................................................................... 777 Cumulative Review........................................................................................................................ 780 Chapter Projects ............................................................................................................................. 782 Appendix A Review A.1 Algebra Essentials .................................................................................................................. 784 A.2 Geometry Essentials ............................................................................................................... 789 A.3 Factoring Polynomials; Completing the Square..................................................................... 795 A.4 Solving Equations .................................................................................................................. 799 A.5 Complex Numbers; Quadratic Equations in the Complex Number System .......................... 813 A.6 Interval Notation; Solving Inequalities .................................................................................. 818 A.7 n th Roots; Rational Exponents ............................................................................................... 830 A.8 Lines....................................................................................................................................... 840 Appendix B Graphing Utilities B.1 The Viewing Rectangle .......................................................................................................... 857 B.2 Using a Graphing Utility to Graph Equations ........................................................................ 858 B.3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry .............................. 863 B.5 Square Screens ....................................................................................................................... 865 1 Chapter 1 Graphs and Functions Section 1.1 1. 0 2.   5 3 8 8     3. 2 2 3 4 25 5    4. 2 2 2 11 60 121 3600 3721 61      Since the sum of the squares of two of the sides of the triangle equals the square of the third side, the triangle is a right triangle. 5. 1 2 bh 6. true 7. x- coordinate or abscissa; y -coordinate or ordinate 8. quadrants 9. midpoint 10. False; the distance between two points is never negative. 11. False; points that lie in quadrant IV will have a positive x -coordinate and a negative y -coordinate. The point   1, 4  lies in quadrant II. 12. True; 1 2 1 2 , 2 2 x x y y M          13. b 14. a 15. (a) Quadrant II (b) x -axis (c) Quadrant III (d) Quadrant I (e) y -axis (f) Quadrant IV 16. (a) Quadrant I (b) Quadrant III (c) Quadrant II (d) Quadrant I (e) y -axis (f) x -axis 17. The points will be on a vertical line that is two units to the right of the y -axis. Chapter 1: Graphs and Functions 2 18. The points will be on a horizontal line that is three units above the x -axis. 19. 2 2 1 2 2 2 ( , ) (2 0) (1 0) 2 1 4 1 5 d P P          20. 2 2 1 2 2 2 ( , ) ( 2 0) (1 0) ( 2) 1 4 1 5 d P P            21. 2 2 1 2 2 2 ( , ) ( 2 1) (2 1) ( 3) 1 9 1 10 d P P            22.   2 2 1 2 2 2 ( , ) 2 ( 1) (2 1) 3 1 9 1 10 d P P           23.       2 2 1 2 2 2 ( , ) (5 3) 4 4 2 8 4 64 68 2 17 d P P            24.         2 2 1 2 2 2 ( , ) 2 1 4 0 3 4 9 16 25 5 d P P            25.   2 2 1 2 2 2 ( , ) 4 ( 7) (0 3) 11 ( 3) 121 9 130            d P P 26.     2 2 1 2 2 2 ( , ) 4 2 2 ( 3) 2 5 4 25 29 d P P           27.   2 2 1 2 2 2 ( , ) (6 5) 1 ( 2) 1 3 1 9 10           d P P 28.     2 2 1 2 2 2 ( , ) 6 ( 4) 2 ( 3) 10 5 100 25 125 5 5 d P P             29.     2 2 1 2 2 2 ( , ) 2.3 ( 0.2) 1.1 (0.3) 2.5 0.8 6.25 0.64 6.89 2.62            d P P 30.     2 2 1 2 2 2 ( , ) 0.3 1.2 1.1 2.3 ( 1.5) ( 1.2) 2.25 1.44 3.69 1.92              d P P 31. 2 2 1 2 2 2 2 2 ( , ) (0 ) (0 ) ( ) ( ) d P P a b a b a b           32. 2 2 1 2 2 2 2 2 2 ( , ) (0 ) (0 ) ( ) ( ) 2 2 d P P a a a a a a a a             33. ( 2,5), (1,3), ( 1, 0) A B C            2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 1 ( 2) (3 5) 3 ( 2) 9 4 13 ( , ) 1 1 (0 3) ( 2) ( 3) 4 9 13 ( , ) 1 ( 2) (0 5) 1 ( 5) 1 25 26 d A B d B C d A C                                    Section 1.1: The Distance and Midpoint Formulas 3 Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:             2 2 2 2 2 2 ( , ) ( , ) ( , ) 13 13 26 13 13 26 26 26 d A B d B C d A C        The area of a triangle is 1 2 A bh   . In this problem,     1 ( , ) ( , ) 2 1 1 13 13 13 2 2 13 square units 2 A d A B d B C          34. ( 2, 5), (12, 3), (10, 11) A B C            2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 12 ( 2) (3 5) 14 ( 2) 196 4 200 10 2 ( , ) 10 12 ( 11 3) ( 2) ( 14) 4 196 200 10 2 ( , ) 10 ( 2) ( 11 5) 12 ( 16) 144 256 400 20 d A B d B C d A C                                       Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:             2 2 2 2 2 2 ( , ) ( , ) ( , ) 10 2 10 2 20 200 200 400 400 400 d A B d B C d A C        The area of a triangle is 1 2 A bh  . In this problem,     1 ( , ) ( , ) 2 1 10 2 10 2 2 1 100 2 100 square units 2 A d A B d B C           35. ( 5,3), (6, 0), (5,5) A B C           2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 6 ( 5) (0 3) 11 ( 3) 121 9 130 ( , ) 5 6 (5 0) ( 1) 5 1 25 26 ( , ) 5 ( 5) (5 3) 10 2 100 4 104 2 26 d A B d B C d A C                                 Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: Chapter 1: Graphs and Functions 4             2 2 2 2 2 2 ( , ) ( , ) ( , ) 104 26 130 104 26 130 130 130 d A C d B C d A B        The area of a triangle is 1 2 A bh  . In this problem,     1 ( , ) ( , ) 2 1 104 26 2 1 2 26 26 2 1 2 26 2 26 square units A d A C d B C              36. ( 6, 3), (3, 5), ( 1, 5) A B C             2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 3 ( 6) ( 5 3) 9 ( 8) 81 64 145 ( , ) 1 3 (5 ( 5)) ( 4) 10 16 100 116 2 29 ( , ) 1 ( 6) (5 3) 5 2 25 4 29 d A B d B C d A C                                     Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:             2 2 2 2 2 2 ( , ) ( , ) ( , ) 29 2 29 145 29 4 29 145 29 116 145 145 145 d A C d B C d A B           The area of a triangle is 1 2 A bh  . In this problem,     1 ( , ) ( , ) 2 1 29 2 29 2 1 2 29 2 29 square units A d A C d B C           37. (4, 3), (0, 3), (4, 2) A B C              2 2 2 2 2 2 2 2 2 2 2 2 ( , ) (0 4) 3 ( 3) ( 4) 0 16 0 16 4 ( , ) 4 0 2 ( 3) 4 5 16 25 41 ( , ) (4 4) 2 ( 3) 0 5 0 25 25 5 d A B d B C d A C                                   Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: Section 1.1: The Distance and Midpoint Formulas 5         2 2 2 2 2 2 ( , ) ( , ) ( , ) 4 5 41 16 25 41 41 41 d A B d A C d B C        The area of a triangle is 1 2 A bh  . In this problem,     1 ( , ) ( , ) 2 1 4 5 2 10 square units A d A B d A C        38. (4, 3), (4, 1), (2, 1) A B C             2 2 2 2 2 2 2 2 2 2 2 2 ( , ) (4 4) 1 ( 3) 0 4 0 16 16 4 ( , ) 2 4 1 1 ( 2) 0 4 0 4 2 ( , ) (2 4) 1 ( 3) ( 2) 4 4 16 20 2 5 d A B d B C d A C                                   Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:         2 2 2 2 2 2 ( , ) ( , ) ( , ) 4 2 2 5 16 4 20 20 20 d A B d B C d A C        The area of a triangle is 1 2 A bh  . In this problem,     1 ( , ) ( , ) 2 1 4 2 2 4 square units A d A B d B C        39. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 4 3 5 , 2 2 8 0 , 2 2 (4, 0) x x y y x y                            40. The coordinates of the midpoint are:   1 2 1 2 ( , ) , 2 2 2 2 0 4 , 2 2 0 4 , 2 2 0, 2 x x y y x y                            41. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 1 8 4 0 , 2 2 7 4 , 2 2 7 , 2 2                                  x x y y x y Chapter 1: Graphs and Functions 6 42. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 2 4 3 2 , 2 2 6 1 , 2 2 1 3, 2 x x y y x y                                    43. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 7 9 5 1 , 2 2 4 16 , 2 2 (8, 2)                              x x y y x y 44. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 2 3 2 , 2 2 2 1 , 2 2 1 1, 2 x x y y x y                                       45. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 0 0 , 2 2 , 2 2 x x y y x y a b a b                          46. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 0 0 , 2 2 , 2 2 x x y y x y a a a a                          47. The x coordinate would be 2 3 5   and the y coordinate would be 5 2 3   . Thus the new point would be   5,3 . 48. The new x coordinate would be 1 2 3     and the new y coordinate would be 6 4 10   . Thus the new point would be   3,10  49. a. If we use a right triangle to solve the problem, we know the hypotenuse is 13 units in length. One of the legs of the triangle will be 2+3=5. Thus the other leg will be: 2 2 2 2 2 5 13 25 169 144 12 b b b b       Thus the coordinates will have an y value of 1 12 13     and 1 12 11    . So the points are   3,11 and   3, 13  . b. Consider points of the form   3, y that are a distance of 13 units from the point   2, 1   .             2 2 2 1 2 1 2 2 2 2 2 2 3 ( 2) 1 5 1 25 1 2 2 26 d x x y y y y y y y y                           2 2 2 2 2 2 13 2 26 13 2 26 169 2 26 0 2 143 0 11 13 y y y y y y y y y y                11 0 11 y y    or 13 0 13 y y     Thus, the points   3,11 and   3, 13  are a distance of 13 units from the point   2, 1   . Section 1.1: The Distance and Midpoint Formulas 7 50. a. If we use a right triangle to solve the problem, we know the hypotenuse is 17 units in length. One of the legs of the triangle will be 2+6=8. Thus the other leg will be: 2 2 2 2 2 8 17 64 289 225 15 b b b b       Thus the coordinates will have an x value of 1 15 14    and 1 15 16   . So the points are   14, 6   and   16, 6  . b. Consider points of the form   , 6 x  that are a distance of 17 units from the point   1, 2 .             2 2 2 1 2 1 2 2 2 2 2 2 1 2 6 2 1 8 2 1 64 2 65 d x x y y x x x x x x x                          2 2 2 2 2 2 17 2 65 17 2 65 289 2 65 0 2 224 0 14 16 x x x x x x x x x x                14 0 14 x x     or 16 0 16 x x    Thus, the points   14, 6   and   16, 6  are a distance of 13 units from the point   1, 2 . 51. Points on the x -axis have a y -coordinate of 0. Thus, we consider points of the form   , 0 x that are a distance of 6 units from the point   4, 3  .           2 2 2 1 2 1 2 2 2 2 2 2 4 3 0 16 8 3 16 8 9 8 25 d x x y y x x x x x x x                        2 2 2 2 2 2 2 6 8 25 6 8 25 36 8 25 0 8 11 ( 8) ( 8) 4(1)( 11) 2(1) 8 64 44 8 108 2 2 8 6 3 4 3 3 2 x x x x x x x x x                             4 3 3 x   or 4 3 3 x   Thus, the points   4 3 3, 0  and   4 3 3, 0  are on the x -axis and a distance of 6 units from the point   4, 3  . 52. Points on the y -axis have an x -coordinate of 0. Thus, we consider points of the form   0, y that are a distance of 6 units from the point   4, 3  .         2 2 2 1 2 1 2 2 2 2 2 2 4 0 3 4 9 6 16 9 6 6 25 d x x y y y y y y y y y                     Chapter 1: Graphs and Functions 8   2 2 2 2 2 2 2 6 6 25 6 6 25 36 6 25 0 6 11 ( 6) (6) 4(1)( 11) 2(1) 6 36 44 6 80 2 2 6 4 5 3 2 5 2 y y y y y y y y y                               3 2 5 y    or 3 2 5 y    Thus, the points   0, 3 2 5   and   0, 3 2 5   are on the y- axis and a distance of 6 units from the point   4, 3  . 53. a. To shift 3 units left and 4 units down, we subtract 3 from the x -coordinate and subtract 4 from the y -coordinate.     2 3,5 4 1,1     b. To shift left 2 units and up 8 units, we subtract 2 from the x -coordinate and add 8 to the y -coordinate.     2 2,5 8 0,13    54. Let the coordinates of point B be   , x y . Using the midpoint formula, we can write   1 8 2,3 , 2 2 x y           . This leads to two equations we can solve. 1 2 2 1 4 5 x x x        8 3 2 8 6 2 y y y       Point B has coordinates   5, 2  . 55.   1 2 1 2 , , 2 2 x x y y M x y           .   1 1 1 , ( 3, 6) P x y    and ( , ) ( 1, 4) x y   , so 1 2 2 2 2 2 3 1 2 2 3 1 x x x x x x            and 1 2 2 2 2 2 6 4 2 8 6 2 y y y y y y        Thus, 2 (1, 2) P  . 56.   1 2 1 2 , , 2 2 x x y y M x y           .   2 2 2 , (7, 2) P x y    and ( , ) (5, 4) x y   , so 1 2 1 1 1 2 7 5 2 10 7 3 x x x x x x        and 1 2 1 1 1 2 ( 2) 4 2 8 ( 2) 6 y y y y y y             Thus, 1 (3, 6) P   . 57. The midpoint of AB is:   0 6 0 0 , 2 2 3, 0 D           The midpoint of AC is:   0 4 0 4 , 2 2 2, 2 E           The midpoint of BC is:   6 4 0 4 , 2 2 5, 2 F             2 2 2 2 ( , ) 0 4 (3 4) ( 4) ( 1) 16 1 17 d C D              2 2 2 2 ( , ) 2 6 (2 0) ( 4) 2 16 4 20 2 5 d B E            2 2 2 2 ( , ) (2 0) (5 0) 2 5 4 25 29 d A F          Section 1.1: The Distance and Midpoint Formulas 9 58. Let 1 2 (0, 0), (0, 4), ( , ) P P P x y          2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 , (0 0) (4 0) 16 4 , ( 0) ( 0) 4 16 , ( 0) ( 4) ( 4) 4 ( 4) 16 d P P d P P x y x y x y d P P x y x y x y                             Therefore,   2 2 2 2 4 8 16 8 16 2 y y y y y y y        which gives 2 2 2 2 16 12 2 3 x x x      Two triangles are possible. The third vertex is     2 3, 2 or 2 3, 2  . 59. 2 2 1 2 2 2 ( , ) ( 4 2) (1 1) ( 6) 0 36 6 d P P             2 2 2 3 2 2 ( , ) 4 ( 4) ( 3 1) 0 ( 4) 16 4 d P P             2 2 1 3 2 2 ( , ) ( 4 2) ( 3 1) ( 6) ( 4) 36 16 52 2 13 d P P               Since       2 2 2 1 2 2 3 1 3 ( , ) ( , ) ( , ) d P P d P P d P P   , the triangle is a right triangle. 60.   2 2 1 2 2 2 ( , ) 6 ( 1) (2 4) 7 ( 2) 49 4 53 d P P              2 2 2 3 2 2 ( , ) 4 6 ( 5 2) ( 2) ( 7) 4 49 53 d P P               2 2 1 3 2 2 ( , ) 4 ( 1) ( 5 4) 5 ( 9) 25 81 106 d P P             Since       2 2 2 1 2 2 3 1 3 ( , ) ( , ) ( , ) d P P d P P d P P   , the triangle is a right triangle. Since     1 2 2 3 , , d P P d P P  , the triangle is isosceles. Therefore, the triangle is an isosceles right triangle. 61.     2 2 1 2 2 2 ( , ) 0 ( 2) 7 ( 1) 2 8 4 64 68 2 17 d P P               2 2 2 3 2 2 ( , ) 3 0 (2 7) 3 ( 5) 9 25 34 d P P               2 2 1 3 2 2 ( , ) 3 ( 2) 2 ( 1) 5 3 25 9 34 d P P            Since 2 3 1 3 ( , ) ( , ) d P P d P P  , the triangle is isosceles. Since       2 2 2 1 3 2 3 1 2 ( , ) ( , ) ( , ) d P P d P P d P P   , the triangle is also a right triangle. Therefore, the triangle is an isosceles right triangle. Chapter 1: Graphs and Functions 10 62.     2 2 1 2 2 2 ( , ) 4 7 0 2 ( 11) ( 2) 121 4 125 5 5 d P P                2 2 2 3 2 2 ( , ) 4 ( 4) (6 0) 8 6 64 36 100 10 d P P                2 2 1 3 2 2 ( , ) 4 7 6 2 ( 3) 4 9 16 25 5 d P P            Since       2 2 2 1 3 2 3 1 2 ( , ) ( , ) ( , ) d P P d P P d P P   , the triangle is a right triangle. 63. Using the Pythagorean Theorem: 2 2 2 2 2 90 90 8100 8100 16200 16200 90 2 127.28 feet d d d d         90 90 90 90 d 64. Using the Pythagorean Theorem: 2 2 2 2 2 60 60 3600 3600 7200 7200 60 2 84.85 feet d d d d          60 60 60 60 d 65. a. First: (90, 0), Second: (90, 90), Third: (0, 90) (0,0) (0,90) (90,0) (90,90) X Y b. Using the distance formula: 2 2 2 2 (310 90) (15 90) 220 ( 75) 54025 5 2161 232.43 feet d           c. Using the distance formula: 2 2 2 2 (300 0) (300 90) 300 210 134100 30 149 366.20 feet d          66. a. First: (60, 0), Second: (60, 60) Third: (0, 60) (0,0) (0,60) (60,0) (60,60) x y b. Using the distance formula: 2 2 2 2 (180 60) (20 60) 120 ( 40) 16000 40 10 126.49 feet d           c. Using the distance formula: 2 2 2 2 (220 0) (220 60) 220 160 74000 20 185 272.03 feet d          Section 1.1: The Distance and Midpoint Formulas 11 67. The Focus heading east moves a distance 60 t after t hours. The truck heading south moves a distance 40 t after t hours. Their distance apart after t hours is: 2 2 2 2 2 (60 ) (45 ) 3600 2025 5625 75 miles       d t t t t t t 68. 15 miles 5280 ft 1 hr 22 ft/sec 1 hr 1 mile 3600 sec      2 2 2 100 22 10000 484 feet d t t     100 22 t d 69. a. The shortest side is between 1 (2.6, 1.5) P  and 2 (2.7, 1.7) P  . The estimate for the desired intersection point is:   1 2 1 2 2.6 2.7 1.5 1.7 , , 2 2 2 2 5.3 3.2 , 2 2 2.65, 1.6 x x y y                          b. Using the distance formula: 2 2 2 2 (2.65 1.4) (1.6 1.3) (1.25) (0.3) 1.5625 0.09 1.6525 1.285 units d           70. Let 1 (2013, 102.87)  P and 2 (2017, 126.17)  P . The midpoint is:     1 2 1 2 , , 2 2 2013 2017 102.87 126.17 , 2 2 4030 229.04 , 2 2 2015, 114.52                           x x y y x y The estimate for 2010 is $114.52 billion. The estimate net sales of Costco Wholesale Corporation in 2015 is $0.85 billion off from the reported value of $113.67 billion. 71. For 2009 we have the ordered pair   2009, 21756 and for 2017 we have the ordered pair   2017, 24858 . The midpoint is     2009 2017 21756 24858 year, $ , 2 2 4026 46614 , 2 2 2013, 23307                  Using the midpoint, we estimate the poverty level in 2013 to be $23,307. This is lower than the actual value. 72. Let   1 0, 0 P  ,   2 , 0 P a  , and 3 3 , 2 2 a a P          . Then           2 2 1 2 2 1 2 1 2 2 2 , 0 0 0 d P P x x y y a a a                 2 2 2 3 2 1 2 1 2 2 2 2 2 2 , 3 0 2 2 3 4 4 4 4 d P P x x y y a a a a a a a a                            d 45t 60t

Study Now!

XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat

Document Details

Related Documents

View all