Solution Manual For Trigonometry: A Unit Circle Approach, 10th Edition
Page 1
’ S S OLUTIONS M ANUAL T IM B RITT Jackson State Community College T RIGONOMETRY : A U NIT C IRCLE A PPROACH T ENTH E DITION Michael Sullivan Chicago State University Page 2
Page 3
Table of Contents Preface Chapter 1 Graphs and Functions 1.1 The Distance and Midpoint Formulas ......................................................................................... 1 1.2 Graphs of Equations in Two Variables; Circles........................................................................ 12 1.3 Functions and Their Graphs ...................................................................................................... 33 1.4 Properties of Functions ............................................................................................................. 50 1.5 Library of Functions; Piecewise-defined Functions ................................................................. 66 1.6 Graphing Techniques: Transformations ................................................................................... 77 1.7 One-to-One Functions; Inverse Functions ................................................................................ 93 Chapter Review.............................................................................................................................. 112 Chapter Test ................................................................................................................................... 121 Chapter Projects ............................................................................................................................. 125 Chapter 2 Trigonometric Functions 2.1 Angles and Their Measure ...................................................................................................... 126 2.2 Trigonometric Functions: Unit Circle Approach .................................................................... 134 2.3 Properties of the Trigonometric Functions ............................................................................. 151 2.4 Graphs of the Sine and Cosine Functions ............................................................................... 162 2.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions...................................... 182 2.6 Phase Shift; Sinusoidal Curve Fitting ..................................................................................... 191 Chapter Review.............................................................................................................................. 203 Chapter Test ................................................................................................................................... 211 Cumulative Review........................................................................................................................ 214 Chapter Projects ............................................................................................................................. 216 Chapter 3 Analytic Trigonometry 3.1 The Inverse Sine, Cosine, and Tangent Functions .................................................................. 220 3.2 The Inverse Trigonometric Functions (Continued) ................................................................ 231 3.3 Trigonometric Equations ........................................................................................................ 243 3.4 Trigonometric Identities ......................................................................................................... 262 3.5 Sum and Difference Formulas ................................................................................................ 274 3.6 Double-angle and Half-angle Formulas .................................................................................. 297 3.7 Product-to-Sum and Sum-to-Product Formulas...................................................................... 321 Chapter Review.............................................................................................................................. 331 Chapter Test ................................................................................................................................... 345 Cumulative Review........................................................................................................................ 350 Chapter Projects ............................................................................................................................. 353 Chapter 4 Applications of Trigonometric Functions 4.1 Right Triangle Trigonometry; Applications ........................................................................... 357 4.2 The Law of Sines .................................................................................................................... 369 4.3 The Law of Cosines ................................................................................................................ 383 4.4 Area of a Triangle ................................................................................................................... 394 4.5 Simple Harmonic Motion; Damped Motion; Combining Waves ........................................... 402 Chapter Review.............................................................................................................................. 411 Chapter Test ................................................................................................................................... 418 Cumulative Review........................................................................................................................ 422 Chapter Projects ............................................................................................................................. 425 Page 4
Chapter 5 Polar Coordinates; Vectors 5.1 Polar Coordinates.................................................................................................................... 429 5.2 Polar Equations and Graphs .................................................................................................... 436 5.3 The Complex Plane; De Moivre’s Theorem ........................................................................... 465 5.4 Vectors .................................................................................................................................... 476 5.5 The Dot Product ...................................................................................................................... 488 5.6 Vectors in Space ..................................................................................................................... 494 5.7 The Cross Product................................................................................................................... 500 Chapter Review.............................................................................................................................. 510 Chapter Test ................................................................................................................................... 519 Cumulative Review........................................................................................................................ 523 Chapter Projects ............................................................................................................................. 525 Chapter 6 Analytic Geometry 6.2 The Parabola ........................................................................................................................... 529 6.3 The Ellipse .............................................................................................................................. 543 6.4 The Hyperbola ........................................................................................................................ 559 6.5 Rotation of Axes; General Form of a Conic ........................................................................... 578 6.6 Polar Equations of Conics ....................................................................................................... 590 6.7 Plane Curves and Parametric Equations ................................................................................. 597 Chapter Review.............................................................................................................................. 610 Chapter Test ................................................................................................................................... 619 Cumulative Review........................................................................................................................ 624 Chapter Projects ............................................................................................................................. 625 Chapter 7 Exponential and Logarithmic Functions 7.1 Exponential Functions ............................................................................................................ 629 7.2 Logarithmic Functions ............................................................................................................ 648 7.3 Properties of Logarithms ........................................................................................................ 668 7.4 Logarithmic and Exponential Equations ................................................................................. 677 7.5 Financial Models .................................................................................................................... 696 7.6 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models .................................................................................................................... 703 7.7 Building Exponential, Logarithmic, and Logistic Models from Data..................................... 713 Chapter Review.............................................................................................................................. 717 Chapter Test ................................................................................................................................... 726 Cumulative Review........................................................................................................................ 729 Chapter Projects ............................................................................................................................. 731 Appendix A Review A.1 Algebra Essentials .................................................................................................................. 734 A.2 Geometry Essentials ............................................................................................................... 739 A.3 Factoring Polynomials; Completing the Square..................................................................... 745 A.4 Solving Equations .................................................................................................................. 748 A.5 Complex Numbers; Quadratic Equations in the Complex Number System .......................... 762 A.6 Interval Notation; Solving Inequalities .................................................................................. 768 A.7 n th Roots; Rational Exponents ............................................................................................... 779 A.8 Lines....................................................................................................................................... 788 A.9 Building Linear Models from Data ........................................................................................ 804 Page 5
Appendix B Graphing Utilities B.1 The Viewing Rectangle .......................................................................................................... 809 B.2 Using a Graphing Utility to Graph Equations ........................................................................ 810 B.3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry .............................. 814 B.5 Square Screens ....................................................................................................................... 816 Page 6
1 Chapter 1 Graphs and Functions Section 1.1 1. 0 2. ( ) 5 3 8 8 − − = = 3. 2 2 3 4 25 5 + = = 4. 2 2 2 11 60 121 3600 3721 61 + = + = = Since the sum of the squares of two of the sides of the triangle equals the square of the third side, the triangle is a right triangle. 5. 1 2 bh 6. true 7. x- coordinate or abscissa; y -coordinate or ordinate 8. quadrants 9. midpoint 10. False; the distance between two points is never negative. 11. False; points that lie in quadrant IV will have a positive x -coordinate and a negative y -coordinate. The point ( ) 1, 4 − lies in quadrant II. 12. True; 1 2 1 2 , 2 2 x x y y M + + = 13. b 14. a 15. (a) quadrant II (b) x -axis (c) quadrant III (d) quadrant I (e) y -axis (f) Quadrant IV 16. (a) quadrant I (b) quadrant III (c) quadrant II (d) quadrant I (e) y -axis (f) x -axis 17. The points will be on a vertical line that is two units to the right of the y -axis. Page 7
Chapter 1: Graphs and Functions 2 18. The points will be on a horizontal line that is three units above the x -axis. 19. 2 2 1 2 2 2 ( , ) (2 0) (1 0) 2 1 4 1 5 d P P = − + − = + = + = 20. 2 2 1 2 2 2 ( , ) ( 2 0) (1 0) ( 2) 1 4 1 5 d P P = − − + − = − + = + = 21. 2 2 1 2 2 2 ( , ) ( 2 1) (2 1) ( 3) 1 9 1 10 d P P = − − + − = − + = + = 22. ( ) 2 2 1 2 2 2 ( , ) 2 ( 1) (2 1) 3 1 9 1 10 d P P = − − + − = + = + = 23. ( ) ( ) ( ) 2 2 1 2 2 2 ( , ) (5 3) 4 4 2 8 4 64 68 2 17 d P P = − + − − = + = + = = 24. ( ) ( ) ( ) ( ) 2 2 1 2 2 2 ( , ) 2 1 4 0 3 4 9 16 25 5 d P P = − − + − = + = + = = 25. ( ) 2 2 1 2 2 2 ( , ) 6 ( 3) (0 2) 9 ( 2) 81 4 85 d P P = − − + − = + − = + = 26. ( ) ( ) 2 2 1 2 2 2 ( , ) 4 2 2 ( 3) 2 5 4 25 29 d P P = − + − − = + = + = 27. ( ) 2 2 1 2 2 2 ( , ) (6 4) 4 ( 3) 2 7 4 49 53 d P P = − + − − = + = + = 28. ( ) ( ) 2 2 1 2 2 2 ( , ) 6 ( 4) 2 ( 3) 10 5 100 25 125 5 5 d P P = − − + − − = + = + = = 29. 2 2 1 2 2 2 2 2 ( , ) (0 ) (0 ) ( ) ( ) d P P a b a b a b = − + − = − + − = + 30. 2 2 1 2 2 2 2 2 2 ( , ) (0 ) (0 ) ( ) ( ) 2 2 d P P a a a a a a a a = − + − = − + − = + = = 31. ( 2,5), (1,3), ( 1, 0) A B C = − = = − ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 1 ( 2) (3 5) 3 ( 2) 9 4 13 ( , ) 1 1 (0 3) ( 2) ( 3) 4 9 13 ( , ) 1 ( 2) (0 5) 1 ( 5) 1 25 26 d A B d B C d A C = − − + − = + − = + = = − − + − = − + − = + = = − − − + − = + − = + = Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: [ ] [ ] [ ] ( ) ( ) ( ) 2 2 2 2 2 2 ( , ) ( , ) ( , ) 13 13 26 13 13 26 26 26 d A B d B C d A C + = + = + = = The area of a triangle is 1 2 A bh = ⋅ . In this problem, Page 8
Section 1.1: The Distance and Midpoint Formulas 3 [ ] [ ] 1 ( , ) ( , ) 2 1 1 13 13 13 2 2 13 square units 2 A d A B d B C = ⋅ ⋅ = ⋅ = ⋅ ⋅ = 32. ( 2, 5), (12, 3), (10, 11) A B C = − = = − ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 12 ( 2) (3 5) 14 ( 2) 196 4 200 10 2 ( , ) 10 12 ( 11 3) ( 2) ( 14) 4 196 200 10 2 ( , ) 10 ( 2) ( 11 5) 12 ( 16) 144 256 400 20 d A B d B C d A C = − − + − = + − = + = = = − + − − = − + − = + = = = − − + − − = + − = + = = Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: [ ] [ ] [ ] ( ) ( ) ( ) 2 2 2 2 2 2 ( , ) ( , ) ( , ) 10 2 10 2 20 200 200 400 400 400 d A B d B C d A C + = + = + = = The area of a triangle is 1 2 A bh = . In this problem, [ ] [ ] 1 ( , ) ( , ) 2 1 10 2 10 2 2 1 100 2 100 square units 2 A d A B d B C = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = 33. ( 5,3), (6, 0), (5,5) A B C = − = = ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 6 ( 5) (0 3) 11 ( 3) 121 9 130 ( , ) 5 6 (5 0) ( 1) 5 1 25 26 ( , ) 5 ( 5) (5 3) 10 2 100 4 104 2 26 d A B d B C d A C = − − + − = + − = + = = − + − = − + = + = = − − + − = + = + = = Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: [ ] [ ] [ ] ( ) ( ) ( ) 2 2 2 2 2 2 ( , ) ( , ) ( , ) 104 26 130 104 26 130 130 130 d A C d B C d A B + = + = + = = The area of a triangle is 1 2 A bh = . In this Page 9
Chapter 1: Graphs and Functions 4 problem, [ ] [ ] 1 ( , ) ( , ) 2 1 104 26 2 1 2 26 26 2 1 2 26 2 26 square units A d A C d B C = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = 34. ( 6, 3), (3, 5), ( 1, 5) A B C = − = − = − ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) 3 ( 6) ( 5 3) 9 ( 8) 81 64 145 ( , ) 1 3 (5 ( 5)) ( 4) 10 16 100 116 2 29 ( , ) 1 ( 6) (5 3) 5 2 25 4 29 d A B d B C d A C = − − + − − = + − = + = = − − + − − = − + = + = = = − − − + − = + = + = Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: [ ] [ ] [ ] ( ) ( ) ( ) 2 2 2 2 2 2 ( , ) ( , ) ( , ) 29 2 29 145 29 4 29 145 29 116 145 145 145 d A C d B C d A B + = + = + ⋅ = + = = The area of a triangle is 1 2 A bh = . In this problem, [ ] [ ] 1 ( , ) ( , ) 2 1 29 2 29 2 1 2 29 2 29 square units A d A C d B C = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = 35. (4, 3), (0, 3), (4, 2) A B C = − = − = ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) (0 4) 3 ( 3) ( 4) 0 16 0 16 4 ( , ) 4 0 2 ( 3) 4 5 16 25 41 ( , ) (4 4) 2 ( 3) 0 5 0 25 25 5 d A B d B C d A C = − + − − − = − + = + = = = − + − − = + = + = = − + − − = + = + = = Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: [ ] [ ] [ ] ( ) 2 2 2 2 2 2 ( , ) ( , ) ( , ) 4 5 41 16 25 41 41 41 d A B d A C d B C + = + = + = = The area of a triangle is 1 2 A bh = . In this Page 10
Section 1.1: The Distance and Midpoint Formulas 5 problem, [ ] [ ] 1 ( , ) ( , ) 2 1 4 5 2 10 square units A d A B d A C = ⋅ ⋅ = ⋅ ⋅ = 36. (4, 3), (4, 1), (2, 1) A B C = − = = ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 ( , ) (4 4) 1 ( 3) 0 4 0 16 16 4 ( , ) 2 4 1 1 ( 2) 0 4 0 4 2 ( , ) (2 4) 1 ( 3) ( 2) 4 4 16 20 2 5 d A B d B C d A C = − + − − = + = + = = = − + − = − + = + = = = − + − − = − + = + = = Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: [ ] [ ] [ ] ( ) 2 2 2 2 2 2 ( , ) ( , ) ( , ) 4 2 2 5 16 4 20 20 20 d A B d B C d A C + = + = + = = The area of a triangle is 1 2 A bh = . In this problem, [ ] [ ] 1 ( , ) ( , ) 2 1 4 2 2 4 square units A d A B d B C = ⋅ ⋅ = ⋅ ⋅ = 37. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 4 3 5 , 2 2 8 0 , 2 2 (4, 0) x x y y x y + + = − + + = = = 38. The coordinates of the midpoint are: ( ) 1 2 1 2 ( , ) , 2 2 2 2 0 4 , 2 2 0 4 , 2 2 0, 2 x x y y x y + + = − + + = = = 39. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 3 6 2 0 , 2 2 3 2 , 2 2 3 ,1 2 x x y y x y + + = − + + = = = 40. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 2 4 3 2 , 2 2 6 1 , 2 2 1 3, 2 x x y y x y + + = + − + = − = = − Page 11
Chapter 1: Graphs and Functions 6 41. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 6 3 1 , 2 2 2 10 , 2 2 (5, 1) x x y y x y + + = + − + = − = = − 42. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 4 2 3 2 , 2 2 2 1 , 2 2 1 1, 2 x x y y x y + + = − + − + = − − = = − − 43. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 0 0 , 2 2 , 2 2 x x y y x y a b a b + + = + + = = 44. The coordinates of the midpoint are: 1 2 1 2 ( , ) , 2 2 0 0 , 2 2 , 2 2 x x y y x y a a a a + + = + + = = 45. The x coordinate would be 2 3 5 + = and the y coordinate would be 5 2 3 − = . Thus the new point would be ( ) 5,3 . 46. The new x coordinate would be 1 2 3 − − = − and the new y coordinate would be 6 4 10 + = . Thus the new point would be ( ) 3,10 − 47. a. If we use a right triangle to solve the problem, we know the hypotenuse is 13 units in length. One of the legs of the triangle will be 2+3=5. Thus the other leg will be: 2 2 2 2 2 5 13 25 169 144 12 b b b b + = + = = = Thus the coordinates will have an y value of 1 12 13 − − = − and 1 12 11 − + = . So the points are ( ) 3,11 and ( ) 3, 13 − . b. Consider points of the form ( ) 3, y that are a distance of 13 units from the point ( ) 2, 1 −