Solution Manual for Adaptive Filter Theory, 5th Edition
Solution Manual for Adaptive Filter Theory, 5th Edition provides you with expert textbook solutions that ensure you understand every concept thoroughly.
Seller Steve
Contributor
4.0
33
4 months ago
Preview (16 of 423)
Sign in to access the full document!
Table of Contents
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P ii
Corrections for Question-Descriptions in the Textbook . . . . . . . . . . . . . . P iv
Notes on Computer Simulations and Provided Programs . . . . . . . . . . . . P vi
Chapter 1: Stochastic Processes and Models . . . . . . . . . . . . . . . . . . . . . . . . P 1
Chapter 2: Wiener Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 21
Chapter 3: Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 48
Chapter 4: Method of Steepest Descent . . . . . . . . . . . . . . . . . . . . . . . . . . P 102
Chapter 5: Method of Stochastic Gradient Descent . . . . . . . . . . . . . . . . P 120
Chapter 6: The Least-Mean-Square(LMS) Algorithm . . . . . . . . . . . . . . P 128
Chapter 7: Normalized Least-Mean-Square(LMS) Algorithm
and Its Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 167
Chapter 8: Block-Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 178
Chapter 9: Method of Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 190
Chapter 10: The Recursive Least-Squares (RLS) Algorithm . . . . . . . . P 214
Chapter 11: Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 229
Chapter 12: Finite-Precision Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 243
Chapter 13: Adaptation in Nonstationary Environments . . . . . . . . . . . . P 251
Chapter 14: Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 304
Chapter 15: Square-Root Adaptive Filtering Algorithms . . . . . . . . . . . P 324
Chapter 16: Order-Recursive Adaptive Filtering Algorithm . . . . . . . . P 341
Chapter 17: Blind Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 380
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 394
iii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P ii
Corrections for Question-Descriptions in the Textbook . . . . . . . . . . . . . . P iv
Notes on Computer Simulations and Provided Programs . . . . . . . . . . . . P vi
Chapter 1: Stochastic Processes and Models . . . . . . . . . . . . . . . . . . . . . . . . P 1
Chapter 2: Wiener Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 21
Chapter 3: Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 48
Chapter 4: Method of Steepest Descent . . . . . . . . . . . . . . . . . . . . . . . . . . P 102
Chapter 5: Method of Stochastic Gradient Descent . . . . . . . . . . . . . . . . P 120
Chapter 6: The Least-Mean-Square(LMS) Algorithm . . . . . . . . . . . . . . P 128
Chapter 7: Normalized Least-Mean-Square(LMS) Algorithm
and Its Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 167
Chapter 8: Block-Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 178
Chapter 9: Method of Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 190
Chapter 10: The Recursive Least-Squares (RLS) Algorithm . . . . . . . . P 214
Chapter 11: Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 229
Chapter 12: Finite-Precision Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 243
Chapter 13: Adaptation in Nonstationary Environments . . . . . . . . . . . . P 251
Chapter 14: Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 304
Chapter 15: Square-Root Adaptive Filtering Algorithms . . . . . . . . . . . P 324
Chapter 16: Order-Recursive Adaptive Filtering Algorithm . . . . . . . . P 341
Chapter 17: Blind Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 380
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 394
iii
Loading page 6...
Loading page 7...
Loading page 8...
Loading page 9...
Loading page 10...
Loading page 11...
Loading page 12...
Loading page 13...
Loading page 14...
Loading page 15...
Loading page 16...
13 more pages available. Scroll down to load them.
Preview Mode
Sign in to access the full document!
100%
Study Now!
XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat