Solution Manual For Digital Design, 5th Edition
Solution Manual For Digital Design, 5th Edition offers textbook solutions that are easy to follow, helping you ace your assignments.
Mason Carter
Contributor
4.5
60
4 months ago
Preview (16 of 407)
Sign in to access the full document!
2
CHAPTER 1
1.1 Base-10: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Octal: 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40
Hex: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
Base-12 14 15 16 17 18 19 1A 1B 20 21 22 23 24 25 26 27 28
1.2 (a) 32,768 (b) 67,108,864 (c) 6,871,947,674
1.3 (4310)5 = 4 * 53 + 3 * 52 + 1 * 51 = 58010
(198)12 = 1 * 122 + 9 * 121 + 8 * 120 = 26010
(435)8 = 4 * 82 + 3 * 81 + 5 * 80 = 28510
(345)6 = 3 * 62 + 4 * 61 + 5 * 60 = 13710
1.4 16-bit binary: 1111_1111_1111_1111
Decimal equivalent: 216 -1 = 65,53510
Hexadecimal equivalent: FFFF16
1.5 Let b = base
(a) 14/2 = (b + 4)/2 = 5, so b = 6
(b) 54/4 = (5*b + 4)/4 = b + 3, so 5 * b = 52 – 4, and b = 8
(c) (2 *b + 4) + (b + 7) = 4b, so b = 11
1.6 (x – 3)(x – 6) = x2 –(6 + 3)x + 6*3 = x2 -11x + 22
Therefore: 6 + 3 = b + 1m, so b = 8
Also, 6*3 = (18)10 = (22)8
1.7 64CD16 = 0110_0100_1100_11012 = 110_010_011_001 _101 = (62315 )8
1.8 (a) Results of repeated division by 2 (quotients are followed by remainders):
43110 = 215(1); 107(1); 53(1); 26(1); 13(0); 6(1) 3(0) 1(1)
Answer: 1111_10102 = FA16
(b) Results of repeated division by 16:
43110 = 26(15); 1(10) (Faster)
Answer: FA = 1111_1010
1.9 (a) 10110.01012 = 16 + 4 + 2 + .25 + .0625 = 22.3125
(b) 16.516 = 16 + 6 + 5*(.0615) = 22.3125
(c) 26.248 = 2 * 8 + 6 + 2/8 + 4/64 = 22.3125
(d) DADA.B16 = 14*163 + 10*162 + 14*16 + 10 + 11/16 = 60,138.6875
CHAPTER 1
1.1 Base-10: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Octal: 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40
Hex: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
Base-12 14 15 16 17 18 19 1A 1B 20 21 22 23 24 25 26 27 28
1.2 (a) 32,768 (b) 67,108,864 (c) 6,871,947,674
1.3 (4310)5 = 4 * 53 + 3 * 52 + 1 * 51 = 58010
(198)12 = 1 * 122 + 9 * 121 + 8 * 120 = 26010
(435)8 = 4 * 82 + 3 * 81 + 5 * 80 = 28510
(345)6 = 3 * 62 + 4 * 61 + 5 * 60 = 13710
1.4 16-bit binary: 1111_1111_1111_1111
Decimal equivalent: 216 -1 = 65,53510
Hexadecimal equivalent: FFFF16
1.5 Let b = base
(a) 14/2 = (b + 4)/2 = 5, so b = 6
(b) 54/4 = (5*b + 4)/4 = b + 3, so 5 * b = 52 – 4, and b = 8
(c) (2 *b + 4) + (b + 7) = 4b, so b = 11
1.6 (x – 3)(x – 6) = x2 –(6 + 3)x + 6*3 = x2 -11x + 22
Therefore: 6 + 3 = b + 1m, so b = 8
Also, 6*3 = (18)10 = (22)8
1.7 64CD16 = 0110_0100_1100_11012 = 110_010_011_001 _101 = (62315 )8
1.8 (a) Results of repeated division by 2 (quotients are followed by remainders):
43110 = 215(1); 107(1); 53(1); 26(1); 13(0); 6(1) 3(0) 1(1)
Answer: 1111_10102 = FA16
(b) Results of repeated division by 16:
43110 = 26(15); 1(10) (Faster)
Answer: FA = 1111_1010
1.9 (a) 10110.01012 = 16 + 4 + 2 + .25 + .0625 = 22.3125
(b) 16.516 = 16 + 6 + 5*(.0615) = 22.3125
(c) 26.248 = 2 * 8 + 6 + 2/8 + 4/64 = 22.3125
(d) DADA.B16 = 14*163 + 10*162 + 14*16 + 10 + 11/16 = 60,138.6875
3
(e) 1010.11012 = 8 + 2 + .5 + .25 + .0625 = 10.8125
1.10 (a) 1.100102 = 0001.10012 = 1.916 = 1 + 9/16 = 1.56310
(b) 110.0102 = 0110.01002 = 6.416 = 6 + 4/16 = 6.2510
Reason: 110.0102 is the same as 1.100102 shifted to the left by two places.
1011.11
1.11 101 | 111011.0000
101
01001
101
1001
101
1000
101
0110
The quotient is carried to two decimal places, giving 1011.11
Checking: 1110112 / 1012 = 5910 / 510 ≅ 1011.112 = 58.7510
1.12 (a) 10000 and 110111
1011 1011
+101 x101
10000 = 1610 1011
1011
110111 = 5510
(b) 62h and 958h
2Eh 0010_1110 2Eh
+34 h 0011_0100 x34h
62h 0110_0010 = 9810 B38
82A
9 5 8h = 239210
1.13 (a) Convert 27.315 to binary:
Integer Remainder Coefficient
Quotient
27/2 = 13 + ½ a0 = 1
13/2 6 + ½ a1 = 1
6/2 3 + 0 a2 = 0
3/2 1 + ½ a3 = 1
½ 0 + ½ a4 = 1
(e) 1010.11012 = 8 + 2 + .5 + .25 + .0625 = 10.8125
1.10 (a) 1.100102 = 0001.10012 = 1.916 = 1 + 9/16 = 1.56310
(b) 110.0102 = 0110.01002 = 6.416 = 6 + 4/16 = 6.2510
Reason: 110.0102 is the same as 1.100102 shifted to the left by two places.
1011.11
1.11 101 | 111011.0000
101
01001
101
1001
101
1000
101
0110
The quotient is carried to two decimal places, giving 1011.11
Checking: 1110112 / 1012 = 5910 / 510 ≅ 1011.112 = 58.7510
1.12 (a) 10000 and 110111
1011 1011
+101 x101
10000 = 1610 1011
1011
110111 = 5510
(b) 62h and 958h
2Eh 0010_1110 2Eh
+34 h 0011_0100 x34h
62h 0110_0010 = 9810 B38
82A
9 5 8h = 239210
1.13 (a) Convert 27.315 to binary:
Integer Remainder Coefficient
Quotient
27/2 = 13 + ½ a0 = 1
13/2 6 + ½ a1 = 1
6/2 3 + 0 a2 = 0
3/2 1 + ½ a3 = 1
½ 0 + ½ a4 = 1
Loading page 6...
Loading page 7...
Loading page 8...
Loading page 9...
Loading page 10...
Loading page 11...
Loading page 12...
Loading page 13...
Loading page 14...
Loading page 15...
Loading page 16...
13 more pages available. Scroll down to load them.
Preview Mode
Sign in to access the full document!
100%
Study Now!
XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat