Vander's Human Physiology 14th Edition Test Bank
Vander's Human Physiology 14th Edition Test Bank helps you grasp fundamental concepts quickly with well-organized study material and practice sets.
John Doe
Contributor
4.2
30
5 months ago
Preview (16 of 778 Pages)
100%
Purchase to unlock
Loading document content...
Preview Mode
Sign in to access the full document!
Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 1 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. Chapter 01 Homeostasis: A Framework for Human Physiology Multiple Choice Questions 1. Which of these is NOT one of the four general categories of cells that make up the human body? A. epithelial cells B. collagen cells C. connective tissue cell D. neuron E. muscle cell Bloom's: Level: 1. Remember HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organi sm. HAPS Topic: Module A06 Levels of organization. Learning Outcome: 01.02 Section: 01.02 Topic: Levels of organization 2. Physiology is the study of A. How two organisms interact B. How organisms function C. The spread of diseases D. The structure of the body Bloom's: Level: 1. Remember HAPS Objective: A05.01 Define the terms anatomy and physiology. HAPS Topic: Module B01 Definition. Learning Outcome: 01.01 Section: 01.01 Topic: Scope of anatomy and physiology Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 2 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 3. The study of disease states in the body is called A. Pathophysiology B. Anatomy C. Homeostasis D. Biology E. Histology Bloom's: Level: 1. Remember HAPS Objective: A05.01 Define the terms anatomy and physiology. HAPS Topic: Module B01 Definition. Learning Outcome: 01.01 Section: 01.01 Topic: Scope of anatomy and physiology 4. Which is NOT a connective tissue cell? A. bone cells B. skeletal muscle cells C. blood cells D. fat cells E. cartilage cells Bloom's: Level: 1. Remember HAPS Objective: A06.02 Give an example of each level of organization. HAPS Topic: Module A06 Levels of organization. Learning Outcome: 01.02 Section: 01.02 Topic: Levels of organization 5. What is the principal function performed by epithelial cells? A. fat storage B. anchoring body structures C. forming boundaries between body compartments D. generating movement E. transmitting electrical signals Bloom's: Level: 1. Remember HAPS Objective: A06.02 Give an example of each level of organization. HAPS Topic: Module A06 Levels of organization. Learning Outcome: 01.02 Section: 01.02 Topic: Levels of organization Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 3 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 6. The cell type that is specialized to communicate with other cells and control their activities is A. Epithelial cells B. Muscle cells C. Connective tissue cells D. Nerve cells Bloom's: Level: 1. Remember HAPS Objective: A06.02 Give an example of each level of organization. HAPS Topic: Module A06 Levels of organization. Learning Outcome: 01.02 Section: 01.02 Topic: Levels of organization 7. What is the term for the developmental process that leads to specialized cell types? A. genomics B. differentiation C. homeostasis D. positive feedback E. acclimatization Bloom's: Level: 1. Remember HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organism. HAPS Topic: Module A06 Levels of organization. Learning Outcome: 01.02 Section: 01.02 Topic: Levels of organization Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 4 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 8. Which best describes the extracellular matrix? A. It is found just inside the cell membrane in all tissues, it sends branching collagen fibers between cells to connect them, and it transmits chemical information from the interior of one cell to the interior of adjacent cells. B. It is a tissue having more than the four general cell types, it transports proteins and polysaccharides between body compartments, and it is the route by which chemical signals like hormones reach all parts of the body. C. It covers the body's surface, it contains connective and muscle tissue, and it helps generate movement. D. It surrounds cells; it contains proteins, polysaccharides, and minerals; it provides a scaffold for cell attachment; and it transmits chemical messengers to cells. Bloom's: Level: 2. Understand HAPS Objective: A06.02 Give an example of each level of organization. HAPS Topic: Module A06 Levels of organization. Learning Outcome: 01.02 Section: 01.02 Topic: Levels of organization 9. If a person begins to sweat upon entering a hot room but continued sweating is able to keep the body temperature constant, which of these best describes her condition? A. She is in an equilibrium state. B. She is not using energy to maintain a constant temperature. C. She is in a steady state D. She is using a positive feedback mechanism. Bloom's: Level: 2. Understand HAPS Objective: B01.01 Define homeostasis. HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 5 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 10. Which concept is the defining feature of the discipline of physiology? A. descent with modification B. homeostasis C. evolution D. dimorphism E. differentiation Bloom's: Level: 2. Understand HAPS Objective: B01.01 Define homeostasis. HAPS Topic: Module B01 Definition. Learning Outcome: 01.04 Section: 01.04 Topic: Definition of homeostasis 11. Describing a physiological variable as "homeostatic" means that it A. has varied from the normal value, and will remain constant at the new value. B. never varies from an exact set point value. C. is in an equilibrium state that requires no energy input to stay at the normal value. D. is in a state of dynamic constancy that is regulated to remain near a stable set point value. E. has no normal range, but will just change to match the outside environmental conditions. Bloom's: Level: 2. Understand HAPS Objective: B01.01 Define homeostasis. HAPS Topic: Module B01 Definition. Learning Outcome: 01.04 Section: 01.04 Topic: Definition of homeostasis 12. Which of the following situations best represents a homeostatic mechanism? A. A person who becomes very nervous begins to sweat profusely. B. After going outside on a hot day, the core body temperature increases. C. Increasing the size of fast - food restaurant portions causes body weight to increase. D. After eating a large batch of salty popcorn, levels of salt in the urine increase. E. As age increases, the amount of calcium in bones tends to decrease. Bloom's: Level: 2. Understand HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 6 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 13. What term is used to describe the steady - state value for any variable that the body attempts to maintain? A. Set point B. Equilibrium potential C. Error signal D. Reflex arc E. Median value Bloom's: Level: 1. Remember HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each. HAPS Topic: Module B02 General types of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms 14. Which of components of a general reflex arc are listed in the order information typically flows through them following a stimulus? A. effector, afferent pathway, integrating center, efferent pathway, receptor B. effector, efferent pathway, integrating center, afferent pathway, receptor C. integrating center, receptor, afferent pathway, efferent pathway, effector D. receptor, efferent pathway, integrating center, afferent pathway, effector E. receptor, afferent pathway, integrating center, efferent pathway, effector Bloom's: Level: 1. Remember HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each. HAPS Topic: Module B02 General types of homeostatic mechanisms. Learning Outcome: 01.06 Section: 01.06 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 7 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 15. Feedforward regulatory processes A. work in anticipation of changes in regulated variables. B. are identical to positive feedback processes C. lead to instability of the regulated variable D. maximize fluctuations in the regulated variable E. tend to force physiological variables away from their set point. Bloom's: Level: 1. Remember HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B02 General types of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms 16. Which situation describes a feedforward mechanism? A. Blood glucose returns toward normal an hour after a meal. B. The smell of rotten food on a plate triggers the vomit reflex. C. A drop in core body temperature triggers shivering. D. An increase in core body temperature stimulates sweating. E. Food in the stomach triggers the production of stomach acid. Bloom's: Level: 2. Understand HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms 17. What is the general purpose of positive feedback mechanisms? A. to maintain a constant internal environment B. to anticipate changes in the environment C. to return a variable toward the set point D. to bring about a rapid change in the body E. to detect changes in the external environment Bloom's: Level: 2. Understand HAPS Objective: B02.02 Compare and contrast positive and negative feedback in terms of the relationship between stimulus and response. HAPS Topic: Module B02 General types of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 8 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 18. Shivering in response to a cold draft is an example of A. A homeostatic mechanism B. Negative feedback C. A physiological reflex D. Thermoregulation E. All of the choices are correct Bloom's: Level: 2. Understand HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms 19. If the amount of sodium in the blood decreases, what would a negative feedback control mechanism be expected to do? A. Decrease the amount of sodium in the blood. B. Increase the amount of sodium in the blood. C. Leave the amount of sodium unchanged. D. Change the set point for sodium. E. Inhibit the ingestion of more sodium. Bloom's: Level: 2. Understand HAPS Objective: B02.02 Compare and contrast positive and negative feedback in terms of the relationship between stimulus and response. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms 20. What is the best description of the efferent pathway of a reflex arc? A. signals from the integrating center to receptors B. the route by which receptors send signals to effectors C. signaling pathway for receptors to influence the integrating center D. the route by which effector organs send signals to receptors E. the route by which signals from an integrating center reach effector organs Bloom's: Level: 1. Remember HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.06 Section: 01.06 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 9 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 21. Which one of the following is the correct sequence for a regulatory reflex arc? A. Stimulus, effector, efferent pathway, integrating center, afferent pathway, receptor B. Stimulus, receptor, efferent pathway, integrating center, afferent pathway, effector C. Stimulus, receptor, afferent pathway, integrating center, efferent pathway, effector D. Stimulus, effector, afferent pathway, integrating center, efferent pathway, receptor E. Effector, efferent pathway, integrating center, afferent pathway, receptor, stimulus Bloom's: Level: 1. Remember HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each. HAPS Topic: Module B02 General types of homeostatic mechanisms. Learning Outcome: 01.06 Section: 01.06 Topic: Examples of homeostatic mechanisms 22. Identify the effectors in this homeostatic reflex: Eating a salt - rich meal increases blood volume and pressure, stretching blood vessel walls. Nerve signals sent to the brainstem stimulate changes in hormonal and neural signaling. The heart rate is slowed, blood vessel walls are relaxed, and the kidneys increase urinary salt. The blood pressure returns toward normal. A. brainstem and blood vessels B. blood vessels, hormones, and nerves C. heart, kidneys, and blood vessels D. brainstem, blood vessels, and kidneys E. hormones and nerves Bloom's: Level: 2. Understand HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.06 Section: 01.06 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 10 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 23. The hormone insulin enhances the transport of glucose into body cells. Its secretion is controlled by a negative feedback system between the concentration of glucose in the blood and the cells that secrete insulin. Which of the following statements is most likely to be correct? A. A decrease in blood glucose concentration will stimulate insulin secretion, which will in turn lower the blood glucose concentration still further B. An increase in blood glucose concentration will stimulate insulin secretion, which will in turn lower the blood glucose concentration C. A decrease in blood glucose concentration will stimulate insulin secretion, which will in turn increase the blood glucose concentration D. An increase in blood glucose concentration will stimulate insulin secretion, which will in turn increase the blood glucose concentration still further Bloom's: Level: 2. Understand HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.05 Section: 01.05 Topic: Examples of homeostatic mechanisms 24. How are endocrine glands and hormones involved in homeostatic reflexes? A. Endocrine glands can be receptors, and hormones can be effectors. B. Endocrine glands can be integrators and hormones can be efferent pathways. C. Endocrine glands can be efferent pathways and hormones can be effectors. D. Endocrine glands are not part of reflex mechanisms, but hormones can be afferent or efferent pathways. E. They are not involved; reflexes only involve actions of the nervous system. Bloom's: Level: 2. Understand HAPS Objective: B03.02 Provide an example of a negative feedback loop that utilizes the endocrine system to relay information . Describe the specific cells or molecules (production cells, hormones, target cells) included in the feedback loop. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.06 Learning Outcome: 01.07 Section: 01.06 Section: 01.07 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 11 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 25. What is a hormone? A. a chemical released from a nerve cell that affects nearby cells across a synapse B. a chemical released from an endocrine gland that affects target cells without entering the bloodstream C. a chemical found in the blood that catalyzes the destruction of ingested toxins and foreign substances D. a chemical excreted from sweat gland that signals other individuals about the physiological status of the body E. a chemical regulator secreted from an endocrine gland that travels through the bloodstream to affect target cells Bloom's: Level: 1. Remember HAPS Objective: J01.02 Define the terms hormone, endocrine gland, endocrine tissue (organ), and target cell. HAPS Topic: Module J01 General functions of the endocrine system. Learning Outcome: 01.07 Section: 01.07 Topic: Examples of homeostatic mechanisms 26. Some neurons in the vagus nerve have synaptic connections to sinoatrial (pacemaker) cells in the heart. These neurons secrete acetylcholine, which ultimately results in a decreased heart rate. This is an example of A. endocrine control B. exocrine control C. hormonal control D. neural control E. paracrine control Bloom's: Level: 2. Understand HAPS Objective: B03.01 Provide an example of a negative feedback loop that utilizes the nervous system to relay information. Describe the specific organs, structures, cells or molecules (receptors, neurons, CNS structures, effectors, neurotransmitters) included i n the feedback loop. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.07 Section: 01.07 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 12 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 27. Heart rate is increased by the release of epinephrine by the adrenal medulla into the bloodstream. This is an example of A. endocrine control B. exocrine control C. paracrine control D. direct neural control E. positive feedback Bloom's: Level: 2. Understand HAPS Objective: B03.02 Provide an example of a negative feedback loop that utilizes the endocrine system to relay information . Describe the specific cells or molecules (production cells, hormones, target cells) included in the feedback loop. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.07 Section: 01.07 Topic: Examples of homeostatic mechanisms 28. How is autocrine regulation best described? A. Chemical regulators are released directly into blood vessels. B. Chemical regulators released by cells affect the functional status of different kinds of cells in the vicinity of the secretory cell. C. Chemical regulators affect the same cells that produce them. D. Chemical regulators reach their site of action through a duct. E. Chemical regulators are continuously released in constant amounts by the cell. Bloom's: Level: 1. Remember HAPS Objective: J06.01 Define the terms paracrine and autocrine. HAPS Topic: Module J06 Local hormones (paracrines and autocrines) and growth factors. Learning Outcome: 01.07 Section: 01.07 Topic: Examples of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 13 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 29. The tall slender body shape that helps to dissipate heat in people native to equatorial regions is an example of A. an adaptation. B. acclimatization. C. set point resetting. D. homeostasis. E. phase shift. Bloom's: Level: 2. Understand HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.08 Section: 01.08 Topic: Human origins and adaptations 30. After spending several days at a high altitude, where oxygen pressure is low, a person will begin to produce more red blood cells, which enhances the ability of blood to carry oxygen to the tissues. What term best describes this type of response? A. developmental acclimatization B. positive feedback C. physiological acclimatization D. feedforward regulation E. evolution Bloom's: Level: 2. Understand HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.08 Section: 01.08 Topic: Types of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 14 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 31. Circadian rhythms are biological rhythms with what main characteristic? A. They are cyclical, like the 28 - day female menstrual cycle. B. They are cyclical, like the rhythmic beating of the heart. C. They are voluntary rhythms, like the time you decide to eat lunch each day. D. They cease to occur when a person is in a dark environment. E. They repeat approximately every 24 hours, like daily spikes in hormone secretion. Bloom's: Level: 1. Remember HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.08 Section: 01.08 Topic: Types of homeostatic mechanisms 32. What is the location of the internal pacemaker that sets biological rhythms? A. suprachiasmatic nucleus of the brain B. ventricles of the heart C. endocrine gland in the gonads D. photoreceptors of the eye E. the adrenal glands Bloom's: Level: 1. Remember HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis. HAPS Topic: Module B03 Examples of homeostatic mechanisms. Learning Outcome: 01.08 Section: 01.08 Topic: Types of homeostatic mechanisms 33. A protein is found in blood that is produced by the pancreas and acts on receptors of cells in the liver. What type of physiological regulator is it most likely to be? A. a hormone B. an autocrine signal C. a paracrine signal D. a neurotransmitter E. an enzyme Bloom's: Level: 1. Remember HAPS Objective: J01.02 Define the terms hormone, endocrine gland, endocrine tissue (organ), and target cell. HAPS Topic: Module J01 General functions of the endocrine system. Learning Outcome: 01.07 Section: 01.07 Topic: Types of homeostatic mechanisms Chapter 01 - Homeostasis: A Framework for Human Physiology 1 - 15 Copyright © 201 7 McGraw - Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw - Hill Education. 34. Which best describes how the total body balance of any chemical substance is determined? A. the rate the body produces the substance B. the rate the substance is secreted from the body C. the rate the substance is metabolized by the body D. the difference between the amount of substance lost from the body and the amount gained the body E. the amount produced by the body minus the amount metabolized by the body Bloom's: Level: 2. Understand HAPS Objective: B05.01 Predict factors or situations affecting various organ systems that could disrupt homeostasis. HAPS Topic: Module B05 Predictions related to homeostatic imbalance, including disease states and disorders. Learning Outcome: 01.08 Section: 01.08 Topic: Types of homeostatic mechanisms 35. A burn patient ingests 100 grams of protein per day and loses 110 grams of protein per day due to the injury. What is the overall protein state of the patient? A. Positive protein balance B. Negative protein balance C. Stable protein balance D. A state that can't be determined Bloom's: Level: 3. Apply HAPS Objective: B05.01 Predict factors or situations affecting various organ systems that could disrupt homeostasis. HAPS Topic: Module J09 Predictions related to homeostatic imbalance, including disease states and disorders. Learning Outcome: 01.08 Section: 01.08 Topic: Types of homeostatic mechanisms
Study Now!
XY-Copilot AI
Unlimited Access
Secure Payment
Instant Access
24/7 Support
Document Chat
Document Details
Subject
Anatomy and Physiology